Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. Altmann is active.

Publication


Featured researches published by Daniel M. Altmann.


Clinical and Experimental Immunology | 2013

Immune mechanisms and the impact of the disrupted lung microbiome in chronic bacterial lung infection and bronchiectasis

Rosemary J. Boyton; Catherine J. Reynolds; Kathryn Quigley; Daniel M. Altmann

Recent studies analysing immunogenetics and immune mechanisms controlling susceptibility to chronic bacterial infection in bronchiectasis implicate dysregulated immunity in conjunction with chronic bacterial infection. Bronchiectasis is a structural pathological end‐point with many causes and disease associations. In about half of cases it is termed idiopathic, because it is of unknown aetiology. Bronchiectasis is proposed to result from a ‘vicious cycle’ of chronic bacterial infection and dysregulated inflammation. Paradoxically, both immune deficiency and excess immunity, either in the form of autoimmunity or excessive inflammatory activation, can predispose to disease. It appears to be a part of the spectrum of inflammatory, autoimmune and atopic conditions that have increased in prevalence through the 20th century, attributed variously to the hygiene hypothesis or the ‘missing microbiota’. Immunogenetic studies showing a strong association with human leucocyte antigen (HLA)‐Cw*03 and HLA‐C group 1 homozygosity and combinational analysis of HLA‐C and killer immunoglobulin‐like receptors (KIR) genes suggests a shift towards activation of natural killer (NK) cells leading to lung damage. The association with HLA‐DR1, DQ5 implicates a role for CD4 T cells, possibly operating through influence on susceptibility to specific pathogens. We hypothesize that disruption of the lung microbial ecosystem, by infection, inflammation and/or antibiotic therapy, creates a disturbed, simplified, microbial community (‘disrupted microbiota’) with downstream consequences for immune function. These events, acting with excessive NK cell activation, create a highly inflammatory lung environment that, in turn, permits the further establishment and maintenance of chronic infection dominated by microbial pathogens. This review discusses the implication of these concepts for the development of therapeutic interventions.


Lancet Infectious Diseases | 2015

Design, recruitment, and microbiological considerations in human challenge studies.

Thomas C. Darton; Christoph J. Blohmke; Vasee S. Moorthy; Daniel M. Altmann; Frederick G. Hayden; Elizabeth A. Clutterbuck; Myron M. Levine; Adrian V. S. Hill; Andrew J. Pollard

Since the 18th century a wealth of knowledge regarding infectious disease pathogenesis, prevention, and treatment has been accumulated from findings of infection challenges in human beings. Partly because of improvements to ethical and regulatory guidance, human challenge studies-involving the deliberate exposure of participants to infectious substances-have had a resurgence in popularity in the past few years, in particular for the assessment of vaccines. To provide an overview of the potential use of challenge models, we present historical reports and contemporary views from experts in this type of research. A range of challenge models and practical approaches to generate important data exist and are used to expedite vaccine and therapeutic development and to support public health modelling and interventions. Although human challenge studies provide a unique opportunity to address complex research questions, participant and investigator safety is paramount. To increase the collaborative effort and future success of this area of research, we recommend the development of consensus frameworks and sharing of best practices between investigators. Furthermore, standardisation of challenge procedures and regulatory guidance will help with the feasibility for using challenge models in clinical testing of new disease intervention strategies.


Acta Neuropathologica | 2013

Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response

Daniel E. Lowther; Deborah L. Chong; Stephanie Ascough; Anna Ettorre; Rebecca J. Ingram; Rosemary J. Boyton; Daniel M. Altmann

Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFNγ+ cells dominate disease initiation with IL-17+ cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFNγ responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFNγ driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFNγ cytokine production by CD4 and CD8 cells, but not IL-17 responses.


Emerging Infectious Diseases | 2015

Consensus on the development of vaccines against naturally acquired melioidosis

Direk Limmathurotsakul; Simon G. P. Funnell; Alfredo G. Torres; Lisa A. Morici; Paul J. Brett; Susanna Dunachie; Timothy P. Atkins; Daniel M. Altmann; Gregory J. Bancroft; Sharon J. Peacock

Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism’s known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis.


Annual Review of Pathology-mechanisms of Disease | 2016

Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology

Rosemary J. Boyton; Daniel M. Altmann

Bronchiectasis is a disorder of persistent lung inflammation and recurrent infection, defined by a common pathological end point: irreversible bronchial dilatation arrived at through diverse etiologies. This suggests an interplay between immunogenetic susceptibility, immune dysregulation, bacterial infection, and lung damage. The damaged epithelium impairs mucus removal and facilitates bacterial infection with increased cough, sputum production, and airflow obstruction. Lung infection is caused by respiratory bacterial and fungal pathogens, including Pseudomonas aeruginosa, Haemophilus, Aspergillus fumigatus, and nontuberculous mycobacteria. Recent studies have highlighted the relationship between the lung microbiota and microbial-pathogen niches. Disease may result from environments favoring interleukin-17-driven neutrophilia. Bronchiectasis may present in autoimmune disease, as well as conditions of immune dysregulation, such as combined variable immune deficiency, transporter associated with antigen processing-deficiency syndrome, and hyperimmunoglobulin E syndrome. Differences in prevalence across geography and ethnicity implicate an etiological mix of genetics and environment underpinning susceptibility.


Thorax | 2014

Peptide-induced immune regulation by a promiscuous and immunodominant CD4T-cell epitope of Timothy grass pollen: a role of Cbl-b and Itch in regulation

Stephen J. Till; Eleanor Raynsford; Catherine J. Reynolds; Kathryn Quigley; Agnieszka Grzybowska-Kowalczyk; Lavina R. Saggar; Andrea Goldstone; Bernard Maillere; William W. Kwok; Daniel M. Altmann; Stephen R. Durham; Rosemary J. Boyton

Background T-cell targeted peptide epitope tolerogens from grass pollen allergens may be useful in treating seasonal allergic rhinitis, but there is urgent need for optimisation of approaches from improved understanding of mechanism. Objective We sought to identify human leukocyte antigen (HLA)-DR1-restricted epitopes from the Timothy grass pollen allergen, Phleum pratense, and characterise T-cell immune regulation following intranasal administration of a single, immunodominant epitope. Methods T-cell epitopes within P pratense were identified using HLA-DR1 transgenic mice and tetramer-guided epitope mapping (TGEM) in HLA-DR1-positive individuals with grass allergy. An immunodominant epitope was tested in HLA-DR1 transgenics for impact on responses to whole Phl p5 b or peptide. Microarrays and quantitative PCR were used to characterise T-cell immunity. Results Peptide 26 (p26) was identified in HLA-DR1 transgenic mice and by TGEM analysis of HLA-DR1-positive individuals with grass allergy. p26 shows promiscuous binding to a wide range of HLA class II alleles, making it of relevance across immunogenetically diverse patients. The epitope is conserved in rye and velvet grass, making it applicable across a spectrum of grass pollen allergy. Intranasal pretreatment of mice with p26 results in significantly reduced T-cell responses. Transcriptomic array analysis in mice showed T-cell regulation in the intranasal treatment group associated with increased expression of members of the Cbl-b and Itch E3 ubiquitin ligase pathway. Conclusions We defined an immunodominant P pratense epitope, p26, with broad binding across multiple HLA class II alleles. Intranasal treatment of mice with p26 results in T-cell regulation to whole allergen, involving the Cbl-b and Itch regulatory pathway.


PLOS Pathogens | 2014

Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4+ T Cell Immunity

Stephanie Ascough; Rebecca J. Ingram; Karen K. Chu; Catherine J. Reynolds; Julie A. Musson; Mehmet Doganay; Gökhan Metan; Yusuf Ozkul; Les Baillie; Shiranee Sriskandan; Stephen J. Moore; Theresa Gallagher; Hugh Dyson; E. Diane Williamson; John H. Robinson; Bernard Maillere; Rosemary J. Boyton; Daniel M. Altmann

Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.


Journal of Immunology | 2015

T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis

Catherine J. Reynolds; Amélie Goudet; Kemajittra Jenjaroen; Manutsanun Sumonwiriya; Darawan Rinchai; Julie A. Musson; S Overbeek; J Makinde; Kathryn Quigley; J Manji; Natasha Spink; P Yos; Wuthiekanun; Gregory J. Bancroft; John H. Robinson; Ganjana Lertmemongkolchai; Susanna Dunachie; Bernard Maillere; M Holden; Daniel M. Altmann; Rosemary J. Boyton

There is an urgent need for a better understanding of adaptive immunity to Burkholderia pseudomallei, the causative agent of melioidosis that is frequently associated with sepsis or death in patients in Southeast Asia and Northern Australia. The imperative to identify vaccine targets is driven both by the public health agenda in these regions and biological threat concerns. In several intracellular bacterial pathogens, alkyl hydroperoxidase reductases are upregulated as part of the response to host oxidative stress, and they can stimulate strong adaptive immunity. We show that alkyl hydroperoxidase reductase (AhpC) of B. pseudomallei is strongly immunogenic for T cells of ‘humanized’ HLA transgenic mice and seropositive human donors. Some T cell epitopes, such as p6, are able to bind diverse HLA class II heterodimers and stimulate strong T cell immunity in mice and humans. Importantly, patients with acute melioidosis who survive infection show stronger T cell responses to AhpC relative to those who do not. Although the sequence of AhpC is virtually invariant among global B. pseudomallei clinical isolates, a Cambodian isolate varies only in C-terminal truncation of the p6 T cell epitope, raising the possibility of selection by host immunity. This variant peptide is virtually unable to stimulate T cell immunity. For an infection in which there has been debate about centrality of T cell immunity in defense, these observations support a role for T cell immunity to AhpC in disease protection.


Journal of Immunology | 2014

CD4+ T Cell Epitopes of FliC Conserved between Strains of Burkholderia: Implications for Vaccines against Melioidosis and Cepacia Complex in Cystic Fibrosis

Julie A. Musson; Catherine J. Reynolds; Darawan Rinchai; Arnone Nithichanon; Prasong Khaenam; Favry E; Natasha Spink; Karen K. Y. Chu; De Soyza A; Gregory J. Bancroft; Ganjana Lertmemongkolchai; Bernard Maillere; Rosemary J. Boyton; Daniel M. Altmann; John H. Robinson

Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei–exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients.


American Journal of Respiratory and Critical Care Medicine | 2015

Chronic Infection by Mucoid Pseudomonas aeruginosa Associated with Dysregulation in T-Cell Immunity to Outer Membrane Porin F.

Kathryn Quigley; Catherine J. Reynolds; Amélie Goudet; Eleanor Raynsford; Ruhena Sergeant; A. Quigley; Stefan Worgall; Diana Bilton; Rob Wilson; Michael R. Loebinger; Bernard Maillere; Daniel M. Altmann; Rosemary J. Boyton

RATIONALE Pseudomonas aeruginosa (PA) is an environmental pathogen that commonly infects individuals with cystic fibrosis (CF) and non-CF bronchiectasis, impacting morbidity and mortality. To understand the pathobiology of interactions between the bacterium and host adaptive immunity and to inform rational vaccine design, it is important to understand the adaptive immune correlates of disease. OBJECTIVES To characterize T-cell immunity to the PA antigen outer membrane porin F (OprF) by analyzing immunodominant epitopes in relation to infection status. METHODS Patients with non-CF bronchiectasis were stratified by frequency of PA isolation. T-cell IFN-γ immunity to OprF and its immunodominant epitopes was characterized. Patterns of human leukocyte antigen (HLA) restriction of immunodominant epitopes were defined using HLA class II transgenic mice. Immunity was characterized with respect to cytokine and chemokine secretion, antibody response, and T-cell activation transcripts. MEASUREMENTS AND MAIN RESULTS Patients were stratified according to whether PA was never, sometimes (<50%), or frequently (≥50%) isolated from sputum. Patients with frequent PA sputum-positive isolates were more likely to be infected by mucoid PA, and they showed a narrow T-cell epitope response and a relative reduction in Th1 polarizing transcription factors but enhanced immunity with respect to antibody production, innate cytokines, and chemokines. CONCLUSIONS We have defined the immunodominant, HLA-restricted T-cell epitopes of OprF. Our observation that chronic infection is associated with a response of narrowed specificity, despite strong innate and antibody immunity, may help to explain susceptibility in these individuals and pave the way for better vaccine design to achieve protective immunity.

Collaboration


Dive into the Daniel M. Altmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca J. Ingram

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amélie Goudet

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge