Daniel M. Dawson
University of St Andrews
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel M. Dawson.
Angewandte Chemie | 2014
Paul S. Wheatley; Pavla Chlubná-Eliášová; Heather F. Greer; Wuzong Zhou; Valerie R. Seymour; Daniel M. Dawson; Sharon E. Ashbrook; Ana B. Pinar; Lynne B. McCusker; Maksym Opanasenko; Jiří Čejka; Russell E. Morris
Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings.
Accounts of Chemical Research | 2013
Sharon E. Ashbrook; Daniel M. Dawson
Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide-bearing radioactive waste. In a second example, we discuss how (17)O NMR can be used to probe the dynamic disorder of H in hydroxyl-humite minerals (nMg2SiO4·Mg(OH)2), and how (19)F NMR can be used to understand F substitution in these systems. The combination of first-principles calculations and multinuclear NMR spectroscopy facilitates the investigation of local structure, disorder, and dynamics in solids. We expect that applications will undoubtedly become more widespread with further advances in computational and experimental methods. Insight into the atomic-scale environment is a crucial first step in understanding the structure-property relationships in solids, and it enables the efficient design of future materials for a range of end uses.
Physical Chemistry Chemical Physics | 2014
Sharon E. Ashbrook; Daniel M. Dawson; Valerie R. Seymour
Microporous materials, having pores and channels on the same size scale as small to medium molecules, have found many important applications in current technologies, including catalysis, gas separation and drug storage and delivery. Many of their properties and functions are related to their detailed local structure, such as the type and distribution of active sites within the pores, and the specific structures of these active sites. Solid-state NMR spectroscopy has a strong track record of providing the requisite detailed atomic-level insight into the structures of microporous materials, in addition to being able to probe dynamic processes occurring on timescales spanning many orders of magnitude (i.e., from s to ps). In this Perspective, we provide a brief review of some of the basic experimental approaches used in solid-state NMR spectroscopy of microporous materials, and then discuss some more recent advances in this field, particularly those applied to the study of crystalline materials such as zeolites and metal-organic frameworks. These advances include improved software for aiding spectral interpretation, the development of the NMR-crystallography approach to structure determination, new routes for the synthesis of isotopically-labelled materials, methods for the characterisation of host-guest interactions, and methodologies suitable for observing NMR spectra of paramagnetic microporous materials. Finally, we discuss possible future directions, which we believe will have the greatest impact on the field over the coming years.
Physical Chemistry Chemical Physics | 2011
Karen E. Johnston; John M. Griffin; Richard I. Walton; Daniel M. Dawson; Philip Lightfoot; Sharon E. Ashbrook
Sodium niobate (NaNbO(3)) has a particularly complex phase diagram, with a series of phase transitions as a function of temperature and pressure, and even at room temperature a number of different structural variations have been suggested. Recent work has demonstrated that bulk powders of NaNbO(3), prepared using a variety of synthetic approaches, contain a mixture of perovskite phases; the commonly reported Pbcm phase and a second, polar phase tentatively identified as belonging to space group P2(1)ma. The two phases exhibit very similar (23)Na MAS NMR spectra, although high-resolution MQMAS spectra were able to distinguish between them. Here, we investigate whether different perovskite polymorphs can be distinguished and/or identified using a variety of (93)Nb NMR methods, including MAS, MQMAS and wideline experiments. We compare the experimental results obtained for these more common perovskite materials to those for the metastable ilmenite polymorph of NaNbO(3). Our experimental results are supported by first-principles calculations of NMR parameters using a planewave pseudopotential approach. The calculated NMR parameters appear very different for each of the phases investigated, but high forces on the atoms indicate many of the structural models derived from diffraction require optimisation of the atomic coordinates. After geometry optimisation, most of these perovskite phases exhibit very similar NMR parameters, in contrast to recent work where it was suggested that (93)Nb provides a useful tool for distinguishing NaNbO(3) polymorphs. Finally, we consider the origin of the quadrupolar coupling in these materials, and its dependence on the deviation from ideality of the NbO(6) octahedra.
APL Materials | 2014
Alistair C. McKinlay; Phoebe K. Allan; Catherine L. Renouf; Morven J. Duncan; Paul S. Wheatley; Stewart J. Warrender; Daniel M. Dawson; Sharon E. Ashbrook; Barbara Gil; Bartosz Marszalek; Tina Düren; Jennifer J. Williams; Cedric Charrier; Derry Mercer; Simon J. Teat; Russell E. Morris
The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.
International Reviews in Physical Chemistry | 2017
Robert F. Moran; Daniel M. Dawson; Sharon E. Ashbrook
Abstract Although the solid state is typically characterised by inherent periodicity, many interesting physical and chemical properties of solids arise from a variation in this, i.e. changes in the nature of the atom occupying a particular site in a crystal structure or variation in the position of an atom (or group of atoms) in different parts of a structure, or variation as a function of time. This lack of long-range order poses significant challenges, not just for the characterisation of the structure of disordered materials, but also simply for its description. The sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local, atomic-scale environment, without the requirement for long-range order, makes it a powerful tool for the study of disorder in the solid state. Information on the number and type(s) of coordinating atoms or through-space and through-bond connectivity between atomic species enables the construction of a detailed picture of the structure. After a brief description of the background theory of NMR spectroscopy, and the experimental methods employed, we will describe the effects of disorder on NMR spectra and the use of calculations to help interpret experimental measurements. We will then review a range of applications to different types of disordered materials, including oxides and ceramics, minerals, porous materials, biomaterials, energy materials, pharmaceuticals, polymers and glasses. We will discuss the most successful approaches for studying different materials, and illustrate the type of information available and the structural insight gained.
Journal of the American Chemical Society | 2017
Giulia P. M. Bignami; Daniel M. Dawson; Valerie R. Seymour; Paul S. Wheatley; Russell E. Morris; Sharon E. Ashbrook
The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of 17O- and doubly 17O- and 29Si-enriched UTL-derived zeolites, by synthesis of 29Si-enriched starting Ge-UTL frameworks and incorporation of 17O from 17O-enriched water during hydrolysis. 17O and 29Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of 17O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.
Nature Chemistry | 2017
Samuel A. Morris; Giulia P. M. Bignami; Yuyang Tian; Marta Navarro; Daniel S. Firth; Jiří Čejka; Paul S. Wheatley; Daniel M. Dawson; Wojciech A. Sławiński; David S. Wragg; Russell E. Morris; Sharon E. Ashbrook
The assembly–disassembly–organization–reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6. The assembly–disassembly–organization–reassembly (ADOR) process has recently enabled the synthesis of unusual — and sometimes previously inaccessible — inorganic materials. Further insight into its complex mechanism has now been gained that explains the unexpected formation and structure of such a zeolite.
Journal of Physical Chemistry A | 2014
Henri Colaux; Daniel M. Dawson; Sharon E. Ashbrook
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”.
Journal of Physical Chemistry C | 2017
Daniel M. Dawson; Robert F. Moran; Sharon E. Ashbrook
NMR crystallography has recently been applied to great effect for silica zeolites. Here we investigate whether it is possible to extend the structural information available from routine NMR spectra via a simple structure–spectrum relationship. Unlike previous empirically derived relationships that have compared experimental crystal structures for (often disordered) silicates with experimental NMR spectra, where the structure may not be an accurate representation of the material studied experimentally, we use NMR parameters calculated by density functional theory (DFT) for both model Si(OSi(OH)3)4 clusters and also extended zeolitic SiO2 frameworks, for which the input structure corresponding to the NMR parameters is known exactly. We arrive at a structure–spectrum relationship dependent on the mean Si–O bond length, mean Si–O–Si bond angle, and the standard deviations of both parameters, which can predict to within 1.3 ppm the 29Si isotropic magnetic shielding that should be obtained from a DFT calculation. While this semiempirical relationship will never supersede DFT where this is possible, it does open up the possibility of a rapid estimation of the outcome of a DFT calculation where the actual calculation would be prohibitively costly or otherwise challenging. We also investigate the structural optimization of SiO2 zeolites using DFT, demonstrating that the mean Si–O bond lengths all tend to 1.62 Å and the distortion index tends to <2.0°, suggesting that these metrics may be suitable for rapid validation of whether a given crystal structure represents a realistic local geometry around Si, or merely a bulk average with contributions from several different local geometries.