Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. Michaelson is active.

Publication


Featured researches published by Daniel M. Michaelson.


Neuroscience | 1997

Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury

Y. Chen; L. Lomnitski; Daniel M. Michaelson; Esther Shohami

Previous studies suggest that traumatic brain injury is associated with increased risk factor for developing Alzheimers disease. Furthermore, the extent of the risk seems to be most pronounced in Alzheimers disease patients who carry the epsilon4 allele of apolipoprotein E, suggesting a connection between susceptibility to head trauma and the apolipoprotein E genotype. Apolipoprotein E-deficient mice provide a useful model for investigating the role of this lipoprotein in neuronal maintenance and repair. In the present study apolipoprotein E-deficient mice and a closed head injury experimental paradigm were used to examine the role of apolipoprotein E in brain susceptibility to head trauma and in neuronal repair. Apolipoprotein E-deficient mice were assessed up to 40 days after closed head injury for neurological and cognitive functions, as well as for histopathological changes in the hippocampus. A neurological severity score used for clinical assessment revealed more severe motor and behavioural deficits in the apolipoprotein E-deficient mice than in the controls, the impairment persisting for at least 40 days after injury. Performance in the Morris water maze, which tests spatial memory, showed a marked learning deficit of the apolipoprotein E-deficient mice when compared with injured controls, which was apparent for at least 40 days. At this time, histopathological examination revealed overt neuronal cell death bilaterally in the hippocampus of the injured apolipoprotein E-deficient mice. The finding that apolipoprotein E-deficient mice exhibit an impaired ability to recover from closed head injury suggests that apolipoprotein E plays an important role in neuronal repair following injury and highlights the applicability of this mouse model to the study of the cellular and molecular mechanisms involved.


Neuroscience Letters | 1995

Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice ☆

Irit Gordon; Ettie Grauer; Idit Genis; Ephraim Sehayek; Daniel M. Michaelson

Apolipoprotein E-deficient mice provide a useful system for studying the role of apolipoprotein E (apoE) in the function of distinct neuronal systems. In the present study we focused on the cholinergic system of these mice. This was pursued by measurements of specific biochemical, physiological and cognitive parameters. Morris Water Maze tasks revealed impairments in working memory but not in reference memory of the apoE-deficient mice. Measurements of brain choline acetyltransferase activities revealed them to be markedly lower in the hippocampus and frontal cortex of the apoE-deficient mice than in the corresponding brain areas of the controls, but unaltered in other brain areas. In addition, hypothermia induced by the centrally acting muscarinic agonist, oxotremorine, was reduced in the apoE-deficient mice as compared to controls. These results show that apoE-deficient mice have cholinergic deficits and highlight the importance of this mouse model for studying the interactions between apoE and the cholinergic nervous system.


Neurobiology of Disease | 2003

ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory

Ofir Levi; Ana L. Jongen-Rêlo; Joram Feldon; Allen D. Roses; Daniel M. Michaelson

Alzheimers disease (AD) is associated with genetic risk factors, of which the allele E4 of apolipoprotein E (apoE4) is the most prevalent, and is affected by environmental factors that include education early in life and socioeconomic background. The extent to which environmental factors affect the phenotypic expression of the AD genetic risk factors is not known. Here we show that the neuronal and cognitive stimulations, which are elicited by environmental enrichment at a young age, are markedly affected by the apoE genotype. Accordingly, exposure to an enriched environment of young mice transgenic for human apoE3, which is the benign AD apoE allele, resulted in improved learning and memory, whereas mice transgenic for human apoE4 were unaffected by the enriched environment and their learning and memory were similar to those of the nonenriched apoE3 transgenic mice. These cognitive effects were associated with higher hippocampal levels of the presynaptic protein synaptophysin and of NGF in apoE3 but not apoE4 transgenic mice. In contrast, cortical synaptophysin and NGF levels of the apoE3 and apoE4 transgenic mice were similarly elevated by environmental enrichment. These findings show that apoE4 impairs hippocampal plasticity and isoform-specifically blocks the environmental stimulation of synaptogenesis and memory. This provides a novel mechanism by which environmental factors can modulate the function and phenotypic expression of the apoE genotype.


Journal of Neurochemistry | 1985

Solubilization of Membrane‐Bound Acetyicholinesterase by a Phosphatidylinositol‐Specific Phospholipase C

Anthony H. Futerman; Martin G. Low; Daniel M. Michaelson; Israel Silman

Abstract: Phosphatidylinositol‐specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.OS upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably of soubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a ∼ 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.


Neurobiology of Disease | 2005

Apolipoprotein E4 enhances brain inflammation by modulation of the NF-κB signaling cascade

Gal Ophir; Ninette Amariglio; Jasmine Jacob-Hirsch; Ran Elkon; Gideon Rechavi; Daniel M. Michaelson

Apolipoprotein E4 (apoE4), the major genetic risk factor of Alzheimers disease (AD), is associated with enhanced brain inflammation. Genome-wide gene expression profiling was employed to study the effects of apoE genotype on hippocampal gene expression in LPS-treated mice, transgenic for either apoE4 or the AD benign allele, apoE3. This revealed that the expression of inflammation-related genes following intracerebroventricular injection of LPS was significantly higher and more prolonged in apoE4 than in apoE3 transgenic mice. Clustering analysis revealed gene clusters which responded differently in apoE4 and apoE3 mice and were significantly enriched in NF-kappaB response elements. Direct measurement of NF-kappaB-regulated genes revealed that their extent of activation was greater in the apoE4 mice. Immunohistochemistry experiments revealed that microglial and NF-kappaB activation were more pronounced in apoE4 than in apoE3 mice. These findings suggest that the increased brain inflammation in apoE4 mice is related to disregulation of NF-kappaB signaling pathway.


Neuroscience | 2000

Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatalities.

T Sabo; L. Lomnitski; A Nyska; S.M Beni; R.R Maronpot; Esther Shohami; A.D Roses; Daniel M. Michaelson

Apolipoprotein E, the major brain lipid-binding protein, is expressed in humans as three common isoforms (E2, E3 and E4). Previous studies revealed that the allele apolipoprotein E4 is a major genetic risk factor of Alzheimers disease and that traumatic brain injury is associated with increased risk for developing this disease. Furthermore, it has been suggested that the effects of traumatic head injury and apolipoprotein E4 in Alzheimers disease are synergistic. To test the hypothesis that the apolipoprotein E genotype affects susceptibility to brain injury, we subjected transgenic mice, expressing either human apolipoprotein E3 or human apolipoprotein E4 on a null mouse apolipoprotein E background and apolipoprotein E-deficient knockouts, to closed head injury and compared mortality, neurological recovery and the extent of brain damage of the survivors. More than 50% of the transgenic mice expressing human apolipoprotein E4 died following closed head injury, whereas only half as many of the transgenic mice expressing human apolipoprotein E3, and of the control and apolipoprotein E-deficient mice died during this period (P<0.02). A neurological severity score used for clinical assessment of the surviving mice up to 11 days after closed head injury revealed that the four mouse groups displayed similar severity of damage at 1h following injury. At three and 11 days post-injury, however, the neurological severity scores of the transgenic mice expressing human apolipoprotein E3 were significantly lower than those of the other three groups whose scores were similar, indicating better recovery of the transgenic mice expressing human apolipoprotein E3. Histopathological examination of the mice performed 11 days post-injury revealed, consistent with the above neurological results, that the size of the damaged brain area of the transgenic mice expressing human apolipoprotein E3 was smaller than that of the other head-injured groups. These findings show that transgenic mice expressing human apolipoprotein E4 are more susceptible than those expressing apolipoprotein E3 to closed head injury. We suggest that this effect is due to both a protective effect of apolipoprotein E3 and an apolipoprotein E4-related pathological function.


Alzheimers & Dementia | 2014

APOE ε4: the most prevalent yet understudied risk factor for Alzheimer's disease.

Daniel M. Michaelson

Brain pathology of Alzheimers diseases (AD) and the genetics of autosomal dominant familial AD have been the “lamp posts” under which the AD field has been looking for therapeutic targets. Although this approach still remains valid, none of the compounds tested to date have produced clinically meaningful results. This calls for developing complementary therapeutic approaches and AD targets. The allele ε4 of apolipoprotein E4 (APOE ε4), is the most prevalent genetic risk factor for sporadic AD, and is expressed in more than half of the AD patients. However, in spite of its genetic prominence, the allele APOE ε4 and its corresponding protein product apoE4 have been understudied. We presently briefly discuss the reasons underlying this situation and review newly developed AD therapeutic approaches that target apoE4 and which pave the way for future studies.


The Journal of Neuroscience | 2008

Activation of the Amyloid Cascade in Apolipoprotein E4 Transgenic Mice Induces Lysosomal Activation and Neurodegeneration Resulting in Marked Cognitive Deficits

Haim Belinson; Dimitri Lev; Eliezer Masliah; Daniel M. Michaelson

The allele E4 of apolipoprotein E (apoE4), the most prevalent genetic risk factor for Alzheimers disease, is associated histopathologically with elevated levels of brain amyloid. This led to the suggestion that the pathological effects of apoE4 are mediated by cross-talk interactions with amyloid β peptide (Aβ), which accentuate the pathological effects of the amyloid cascade. The mechanisms underlying the Aβ-mediated pathological effects of apoE4 are unknown. We have shown recently that inhibition of the Aβ-degrading enzyme neprilysin in brains of wild-type apoE3 and apoE4 mice results in rapid and similar elevations in their total brain Aβ levels. However, the nucleation and aggregation of Aβ in these mice were markedly affected by the apoE genotype and were specifically enhanced in the apoE4 mice. We presently used the neprilysin inhibition paradigm to analyze the neuropathological and cognitive effects that are induced by apoE4 after activation of the amyloid cascade. This revealed that apoE4 stimulates isoform specifically the degeneration of hippocampal CA1 neurons and of entorhinal and septal neurons, which is accompanied by the accumulation of intracellular Aβ and apoE and with lysosomal activation. Furthermore, these neuropathological effects are associated isoform specifically with the occurrence of pronounced cognitive deficits in the ApoE4 mice. These findings provide the first in vivo evidence regarding the cellular mechanisms underlying the pathological cross talk between apoE4 and Aβ, as well as a novel model system of neurodegeneration in vivo that is uniquely suitable for studying the early stages of the amyloid cascade and the effects thereon of apoE4.


Journal of Neurochemistry | 1978

INDUCED ACETYLCHOLINE RELEASE FROM ACTIVE PURELY CHOLINERGIC TORPEDO SYNAPTOSOMES

Daniel M. Michaelson; Mordechai Sokolovsky

Viablse, purely cholinergic synaptosomes were prepared from the electric organ of Torpedo ocellata and partially purified by differential and sucrose density centrifugation. The synaptosomes contain acetylcholine (ACh), synaptic vesicles, cytoplasmic markers and mitochondria. No adherent postsynaptic membranes were detected. K+ depolarization as well as the ionophore A23187 mediate Ca2+ permeation into the synaptosomes and the consequent release of ACh. Mg2+ does not evoke ACh release whereas Sr2+ and Ba2+ can replace Ca2+ in evoking K+ depolarization induced ACh secretion. In accordance with the calcium hypothesis of stimulus–secretion coupling, both K+ depolarization and the ionophore A23187 seem to mediate the release of the same population of ACh molecules. The mode of action of the ionophore X537A differs from that of A23187. X537A acts independently of Ca2+ and induces the release of a larger fraction of the ACh contained in the fractionated nerve terminals. These results demonstrate that the Torpedo synaptosomes contain the neurosecretion apparatus in a functional active state. This preparation extends the utility of synaptosomes for structural and functional biochemical studies of neurotransmission, as it uniquely contains only one neurosecretion system (cholinergic).


Journal of Neurochemistry | 2007

Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice

Ofir Levi; Daniel M. Michaelson

Neurodegeneration in Alzheimers disease (AD) is associated with the activation of neurogenesis. The mechanisms underlying this crosstalk between neuronal death and birth and the extent to which it is affected by genetic risk factors of AD are not known. We employed transgenic mice expressing human apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, or expressing human apoE3 (an AD‐benign allele), in order to examine the hypothesis that apoE4 tilts the balance between neurogenesis and neuronal cell death in favor of the latter. The results showed an isoform‐specific increase in neurogenesis in the hippocampal dentate gyrus (DG) under standard conditions in apoE4‐transgenic mice. Environmental stimulation, which increases neurogenesis in the DG of apoE3‐transgenic and wild‐type mice, had the opposite effect on the apoE4 mice, where it triggered apoptosis while decreasing hippocampal neurogenesis. These effects were specific to the DG and were not observed in the subventricular zone, where neurogenesis was unaffected by either the apoE genotype or the environmental conditions. These in vivo findings demonstrate a linkage between neuronal apoptosis and the impaired neuronal plasticity and cognition of apoE4‐transgenic mice, and suggest that similar interactions between apoE4 and environmental factors might occur in AD.

Collaboration


Dive into the Daniel M. Michaelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Shohami

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge