Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel M. Rotroff is active.

Publication


Featured researches published by Daniel M. Rotroff.


Environmental Health Perspectives | 2009

In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

Richard S. Judson; Keith A. Houck; Robert J. Kavlock; Thomas B. Knudsen; Matthew T. Martin; Holly M. Mortensen; David M. Reif; Daniel M. Rotroff; Imran Shah; Ann M. Richard; David J. Dix

Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. Methods We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Results Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. Conclusions This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.


Toxicological Sciences | 2012

Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

Barbara A. Wetmore; John F. Wambaugh; Stephen S. Ferguson; Mark A. Sochaski; Daniel M. Rotroff; Kimberly Freeman; Harvey J. Clewell; David J. Dix; Melvin E. Andersen; Keith A. Houck; Brittany Allen; Richard S. Judson; Reetu R. Singh; Robert J. Kavlock; Ann M. Richard; Russell S. Thomas

High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, clearance, and exposure. Hepatic metabolic clearance and plasma protein binding were experimentally measured for 239 ToxCast Phase I chemicals. The experimental data were used in a population-based in vitro-to-in vivo extrapolation model to estimate the daily human oral dose, called the oral equivalent dose, necessary to produce steady-state in vivo blood concentrations equivalent to in vitro AC(50) (concentration at 50% of maximum activity) or lowest effective concentration values across more than 500 in vitro assays. The estimated steady-state oral equivalent doses associated with the in vitro assays were compared with chronic aggregate human oral exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. A total of 18 (9.9%) chemicals for which human oral exposure estimates were available had oral equivalent doses at levels equal to or less than the highest estimated U.S. population exposures. Ranking the chemicals by nominal assay concentrations would have resulted in different chemicals being prioritized. The in vitro assay endpoints with oral equivalent doses lower than the human exposure estimates included cell growth kinetics, cytokine and cytochrome P450 expression, and cytochrome P450 inhibition. The incorporation of dosimetry and exposure provide necessary context for interpretation of in vitro toxicity screening data and are important considerations in determining chemical testing priorities.


Toxicological Sciences | 2010

Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

Daniel M. Rotroff; Barbara A. Wetmore; David J. Dix; Stephen S. Ferguson; Harvey J. Clewell; Keith A. Houck; Edward L. LeCluyse; Melvin E. Andersen; Richard S. Judson; Cornelia M. Smith; Mark A. Sochaski; Robert J. Kavlock; Frank Boellmann; Matthew T. Martin; David M. Reif; John F. Wambaugh; Russell S. Thomas

Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein binding were experimentally measured for 35 ToxCast phase I chemicals. The experimental data were used to parameterize a population-based in vitro-to-in vivo extrapolation model for estimating the human oral equivalent dose necessary to produce a steady-state in vivo concentration equivalent to in vitro AC(50) (concentration at 50% of maximum activity) and LEC (lowest effective concentration) values from the ToxCast data. For 23 of the 35 chemicals, the range of oral equivalent doses for up to 398 ToxCast assays was compared with chronic aggregate human oral exposure estimates in order to assess whether significant in vitro bioactivity occurred within the range of maximum expected human oral exposure. Only 2 of the 35 chemicals, triclosan and pyrithiobac-sodium, had overlapping oral equivalent doses and estimated human oral exposures. Ranking by the potencies of the AC(50) and LEC values, these two chemicals would not have been at the top of a prioritization list. Integrating both dosimetry and human exposure information with the high-throughput toxicity screening efforts provides a better basis for making informed decisions on chemical testing priorities and regulatory attention. Importantly, these tools are necessary to move beyond hazard rankings to estimates of possible in vivo responses based on in vitro screens.


Chemical Research in Toxicology | 2010

Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program.

Matthew T. Martin; David J. Dix; Richard S. Judson; Robert J. Kavlock; David M. Reif; Ann M. Richard; Daniel M. Rotroff; Sergei Romanov; Alexander Medvedev; Natalia Poltoratskaya; Maria Gambarian; Matt Moeser; Sergei S. Makarov; Keith A. Houck

Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such effects during early stages of chemical development and use, and before potential exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation approaches to meet this demand is limited by low throughput and high costs. In the context of EPAs ToxCast project, we have evaluated a novel cellular biosensor system (Factorial (1) ) that enables rapid, high-content assessment of a compounds impact on gene regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated transcription factor reporter constructs with a highly homogeneous method of detection enabling simultaneous evaluation of multiplexed transcription factor activities. Here, we demonstrate the application of the technology toward determining bioactivity profiles by quantitatively evaluating the effects of 309 environmental chemicals on 25 nuclear receptors and 48 transcription factor response elements. We demonstrate coherent transcription factor activity across nuclear receptors and their response elements and that Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a chemical. Additionally, as part of the ToxCast program, we identify molecular targets that associate with in vivo end points and represent modes of action that can serve as potential toxicity pathway biomarkers and inputs for predictive modeling of in vivo toxicity.


Environmental Science & Technology | 2010

Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity

Richard S. Judson; Matthew T. Martin; David M. Reif; Keith A. Houck; Thomas B. Knudsen; Daniel M. Rotroff; Menghang Xia; Srilatha Sakamuru; Ruili Huang; Paul Shinn; Christopher P. Austin; Robert J. Kavlock; David J. Dix

The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values approximately 100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.


Environmental Health Perspectives | 2013

Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals

Daniel M. Rotroff; David J. Dix; Keith A. Houck; Thomas B. Knudsen; Matthew T. Martin; Keith W. McLaurin; David M. Reif; Kevin M. Crofton; Amar V. Singh; Menghang Xia; Ruili Huang; Richard S. Judson

Background: Over the past 20 years, an increased focus on detecting environmental chemicals that pose a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP; thus, processing these chemicals using current test batteries could require millions of dollars and decades. A need for increased throughput and efficiency motivated the development of methods using in vitro high throughput screening (HTS) assays to prioritize chemicals for EDSP Tier 1 screening (T1S). Objective: In this study we used U.S. EPA ToxCast HTS assays for estrogen, androgen, steroidogenic, and thyroid-disrupting mechanisms to classify compounds and compare ToxCast results to in vitro and in vivo data from EDSP T1S assays. Method: We implemented an iterative model that optimized the ability of endocrine-related HTS assays to predict components of EDSP T1S and related results. Balanced accuracy was used as a measure of model performance. Results: ToxCast estrogen receptor and androgen receptor assays predicted the results of relevant EDSP T1S assays with balanced accuracies of 0.91 (p < 0.001) and 0.92 (p < 0.001), respectively. Uterotrophic and Hershberger assay results were predicted with balanced accuracies of 0.89 (p < 0.001) and 1 (p < 0.001), respectively. Models for steroidogenic and thyroid-related effects could not be developed with the currently published ToxCast data. Conclusions: Overall, results suggest that current ToxCast assays can accurately identify chemicals with potential to interact with the estrogenic and androgenic pathways, and could help prioritize chemicals for EDSP T1S assays.


Scientific Reports | 2015

Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway

Ruili Huang; Srilatha Sakamuru; Matt Martin; David M. Reif; Richard S. Judson; Keith A. Houck; Warren Casey; Jui-Hua Hsieh; Keith R. Shockley; Patricia Ceger; Jennifer Fostel; Kristine L. Witt; Weida Tong; Daniel M. Rotroff; Tongan Zhao; Paul Shinn; Anton Simeonov; David J. Dix; Christopher P. Austin; Robert J. Kavlock; Raymond R. Tice; Menghang Xia

The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα β-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2010

Xenobiotic-metabolizing enzyme and transporter gene expression in primary cultures of human hepatocytes modulated by ToxCast chemicals.

Daniel M. Rotroff; Andrew L. Beam; David J. Dix; Adam M. Farmer; Kimberly M. Freeman; Keith A. Houck; Richard S. Judson; Edward L. LeCluyse; Matthew T. Martin; David M. Reif; Stephen S. Ferguson

Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the concentration- and time-response of the 320 ToxCast chemicals for changes in expression of genes regulated by nuclear receptors. Fourteen gene targets were monitored in quantitative nuclease protection assays: six representative cytochromes P-450, four hepatic transporters, three Phase II conjugating enzymes, and one endogenous metabolism gene involved in cholesterol synthesis. These gene targets are sentinels of five major signaling pathways: AhR, CAR, PXR, FXR, and PPARα. Besides gene expression, the relative potency and efficacy for these chemicals to modulate cellular health and enzymatic activity were assessed. Results demonstrated that the culture system was an effective model of chemical-induced responses by prototypical inducers such as phenobarbital and rifampicin. Gene expression results identified various ToxCast chemicals that were potent or efficacious inducers of one or more of the 14 genes, and by inference the 5 nuclear receptor signaling pathways. Significant relative risk associations with rodent in vivo chronic toxicity effects are reported for the five major receptor pathways. These gene expression data are being incorporated into the larger ToxCast predictive modeling effort.


Environmental Science & Technology | 2014

Predictive Endocrine Testing in the 21st Century Using in Vitro Assays of Estrogen Receptor Signaling Responses

Daniel M. Rotroff; Matt Martin; David J. Dix; Dayne L. Filer; Keith A. Houck; Thomas B. Knudsen; Nisha S. Sipes; David M. Reif; Menghang Xia; Ruili Huang; Richard S. Judson

Thousands of environmental chemicals are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chemicals for ED-related whole-animal tests. In this study, 1814 chemicals including pesticide active and inert ingredients, industrial chemicals, food additives, and pharmaceuticals were evaluated in a panel of 13 in vitro HTS assays. The panel of in vitro assays interrogated multiple end points related to estrogen receptor (ER) signaling, namely binding, agonist, antagonist, and cell growth responses. The results from the in vitro assays were used to create an ER Interaction Score. For 36 reference chemicals, an ER Interaction Score >0 showed 100% sensitivity and 87.5% specificity for classifying potential ER activity. The magnitude of the ER Interaction Score was significantly related to the potency classification of the reference chemicals (p < 0.0001). ERα/ERβ selectivity was also evaluated, but relatively few chemicals showed significant selectivity for a specific isoform. When applied to a broader set of chemicals with in vivo uterotrophic data, the ER Interaction Scores showed 91% sensitivity and 65% specificity. Overall, this study provides a novel method for combining in vitro concentration response data from multiple assays and, when applied to a large set of ER data, accurately predicted estrogenic responses and demonstrated its utility for chemical prioritization.


Nature Genetics | 2016

Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin

Kaixin Zhou; Sook Wah Yee; Eric L. Seiser; Nienke van Leeuwen; Roger Tavendale; Amanda J. Bennett; Christopher J. Groves; R L Coleman; Amber A van der Heijden; Joline W Beulens; Catherine E de Keyser; Linda Zaharenko; Daniel M. Rotroff; Mattijs Out; Kathleen A. Jablonski; Ling Chen; Martin Javorský; Jozef Židzik; A. Levin; L. Keoki Williams; Tanja Dujic; Sabina Semiz; Michiaki Kubo; Huan-Chieh Chien; Shiro Maeda; John S. Witte; Longyang Wu; Ivan Tkáč; Adriaan Kooy; Ron H N van Schaik

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10−14) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine.

Collaboration


Dive into the Daniel M. Rotroff's collaboration.

Top Co-Authors

Avatar

Alison A. Motsinger-Reif

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Richard S. Judson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Keith A. Houck

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David J. Dix

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David M. Reif

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Richard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Matthew T. Martin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Oliver Fiehn

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert J. Kavlock

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge