Daniel M. Weinreich
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel M. Weinreich.
Nature Reviews Genetics | 2005
Mark A. DePristo; Daniel M. Weinreich; Daniel L. Hartl
Proteins are finicky molecules; they are barely stable and are prone to aggregate, but they must function in a crowded environment that is full of degradative enzymes bent on their destruction. It is no surprise that many common diseases are due to missense mutations that affect protein stability and aggregation. Here we review the literature on biophysics as it relates to molecular evolution, focusing on how protein stability and aggregation affect organismal fitness. We then advance a biophysical model of protein evolution that helps us to understand phenomena that range from the dynamics of molecular adaptation to the clock-like rate of protein evolution.
Evolution | 2005
Daniel M. Weinreich; Richard A. Watson; Lin Chao
Abstract Epistasis for fitness means that the selective effect of a mutation is conditional on the genetic background in which it appears. Although epistasis is widely observed in nature, our understanding of its consequences for evolution by natural selection remains incomplete. In particular, much attention focuses only on its influence on the instantaneous rate of changes in frequency of selected alleles via epistatic contribution to the additive genetic variance for fitness. Thus, in this framework epistasis only has evolutionary importance if the interacting loci are simultaneously segregating in the population. However, the selective accessibility of mutational trajectories to high fitness genotypes may depend on the genetic background in which novel mutations appear, and this effect is independent of population polymorphism at other loci. Here we explore this second influence of epistasis on evolution by natural selection. We show that it is the consequence of a particular form of epistasis, which we designate sign epistasis. Sign epistasis means that the sign of the fitness effect of a mutation is under epistatic control; thus, such a mutation is beneficial on some genetic backgrounds and deleterious on others. Recent experimental innovations in microbial systems now permit assessment of the fitness effects of individual mutations on multiple genetic backgrounds. We review this literature and identify many examples of sign epistasis, and we suggest that the implications of these results may generalize to other organisms. These theoretical and empirical considerations imply that strong genetic constraint on the selective accessibility of trajectories to high fitness genotypes may exist and suggest specific areas of investigation for future research.
Nature | 2007
Frank J. Poelwijk; Daniel J. Kiviet; Daniel M. Weinreich; Sander J. Tans
When attempting to understand evolution, we traditionally rely on analysing evolutionary outcomes, despite the fact that unseen intermediates determine its course. A handful of recent studies has begun to explore these intermediate evolutionary forms, which can be reconstructed in the laboratory. With this first view on empirical evolutionary landscapes, we can now finally start asking why particular evolutionary paths are taken.
Evolution | 2005
Daniel M. Weinreich; Lin Chao
Abstract Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for Ncrit, the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high‐fitness escape genotypes produced in populations larger than Ncrit before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Elena R. Lozovsky; Thanat Chookajorn; Kyle M. Brown; Mallika Imwong; Philip Shaw; Sumalee Kamchonwongpaisan; Daniel E. Neafsey; Daniel M. Weinreich; Daniel L. Hartl
The spread of high-level pyrimethamine resistance in Africa threatens to curtail the therapeutic lifetime of antifolate antimalarials. We studied the possible evolutionary pathways in the evolution of pyrimethamine resistance using an approach in which all possible mutational intermediates were created by site-directed mutagenesis and assayed for their level of drug resistance. The coding sequence for dihydrofolate reductase (DHFR) from the malaria parasite Plasmodium falciparum was mutagenized, and tests were carried out in Escherichia coli under conditions in which the endogenous bacterial enzyme was selectively inhibited. We studied 4 key amino acid replacements implicated in pyrimethamine resistance: N51I, C59R, S108N, and I164L. Using empirical estimates of the mutational spectrum in P. falciparum and probabilities of fixation based on the relative levels of resistance, we found that the predicted favored pathways of drug resistance are consistent with those reported in previous kinetic studies, as well as DHFR polymorphisms observed in natural populations. We found that 3 pathways account for nearly 90% of the simulated realizations of the evolution of pyrimethamine resistance. The most frequent pathway (S108N and then C59R, N51I, and I164L) accounts for more than half of the simulated realizations. Our results also suggest an explanation for why I164L is detected in Southeast Asia and South America, but not at significant frequencies in Africa.
Philosophical Transactions of the Royal Society B | 2006
Martin F. Polz; Dana E. Hunt; Sarah P. Preheim; Daniel M. Weinreich
Microbes in the ocean dominate biogeochemical processes and are far more diverse than anticipated. Thus, in order to understand the ocean system, we need to delineate microbial populations with predictable ecological functions. Recent observations suggest that ocean communities comprise diverse groups of bacteria organized into genotypic (and phenotypic) clusters of closely related organisms. Although such patterns are similar to metazoan communities, the underlying mechanisms for microbial communities may differ substantially. Indeed, the potential among ocean microbes for vast population sizes, extensive migration and both homologous and illegitimate genetic recombinations, which are uncoupled from reproduction, challenges classical population models primarily developed for sexually reproducing animals. We examine possible mechanisms leading to the formation of genotypic clusters and consider alternative population genetic models for differentiation at individual loci as well as gene content at the level of whole genomes. We further suggest that ocean bacteria follow at least two different adaptive strategies, which constrain rates and bounds of evolutionary processes: the ‘opportuni-troph’, exploiting spatially and temporally variable resources; and the passive oligotroph, efficiently using low nutrient concentrations. These ecological lifestyle differences may represent a fundamental divide with major consequences for growth and predation rates, genome evolution and population diversity, as emergent properties driving the division of labour within microbial communities.
Protein Science | 2012
David A. Liberles; Sarah A. Teichmann; Ivet Bahar; Ugo Bastolla; Jesse D. Bloom; Erich Bornberg-Bauer; Lucy J. Colwell; A. P. Jason de Koning; Nikolay V. Dokholyan; Julian J. Echave; Arne Elofsson; Dietlind L. Gerloff; Richard A. Goldstein; Johan A. Grahnen; Mark T. Holder; Clemens Lakner; Nicholas Lartillot; Simon C. Lovell; Gavin J. P. Naylor; Tina Perica; David D. Pollock; Tal Pupko; Lynne Regan; Andrew J. Roger; Nimrod D. Rubinstein; Eugene I. Shakhnovich; Kimmen Sjölander; Shamil R. Sunyaev; Ashley I. Teufel; Jeffrey L. Thorne
Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state‐of‐the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high‐throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.
Trends in Genetics | 2010
Pascal-Antoine Christin; Daniel M. Weinreich; Guillaume Besnard
Convergent phenotypes provide extremely valuable systems for studying the genetics of new adaptations. Accumulating studies on this topic have reported surprising cases of convergent evolution at the molecular level, ranging from gene families being recurrently recruited to identical amino acid replacements in distant lineages. Together, these different examples of genetic convergence suggest that molecular evolution is in some cases strongly constrained by a combination of limited genetic material suitable for new functions and a restricted number of substitutions that can confer specific enzymatic properties. We discuss approaches for gaining further insights into the causes of genetic convergence and their potential contribution to our understanding of how the genetic background determines the evolvability of complex organismal traits.
Current Opinion in Genetics & Development | 2013
Daniel M. Weinreich; Yinghong Lan; C Scott Wylie; Robert B. Heckendorn
Natural selection drives evolving populations up the fitness landscape, the projection from nucleotide sequence space to organismal reproductive success. While it has long been appreciated that topographic complexities on fitness landscapes can arise only as a consequence of epistatic interactions between mutations, evolutionary genetics has mainly focused on epistasis between pairs of mutations. Here we propose a generalization to the classical population genetic treatment of pairwise epistasis that yields expressions for epistasis among arbitrary subsets of mutations of all orders (pairwise, three-way, etc.). Our approach reveals substantial higher-order epistasis in almost every published fitness landscape. Furthermore we demonstrate that higher-order epistasis is critically important in two systems we know best. We conclude that higher-order epistasis deserves empirical and theoretical attention from evolutionary geneticists.
Nature | 1977
Daniel M. Weinreich
EFFORTS to prove that histamine has a role in synaptic neurotransmission have been less successful than for other biogenic amines. For example, there has been no convincing physiological or pharmacological evidence to support the transmitter candidacy of this imidazole at any known synapse. In the central nervous system (CNS) of the marine mollusc Aplysia californica chemical measurements of single isolated neurones have revealed large concentrations of histamine within two identified neurones1. The histamine-containing neurones (HN) uniquely possess a specific histidine decarboxylating enzyme and they can synthesise and store labelled histamine2. These biochemical observations prompted the suggestion2 that the two identified nerve cells utilise histamine as a neurotransmitter. The physiological studies reported here show that each HN monosynaptically elicits multicomponent excitatory and inhibitory postsynaptic potentials (p.s.ps) in different follower neurones, the somal membranes of which show appropriate potential changes to iontophoretic application of histamine. This suggests that histamine is a neurotransmitter released from the nerve terminals of the HN.