Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Magnusson is active.

Publication


Featured researches published by Daniel Magnusson.


Solvent Extraction and Ion Exchange | 2009

Demonstration of a TODGA based Extraction Process for the Partitioning of Minor Actinides from a PUREX Raffinate

Daniel Magnusson; Birgit Christiansen; Jean-Paul Glatz; Rikard Malmbeck; Giuseppe Modolo; D. Serrano-Purroy; Christian Sorel

Abstract: Efficient recovery of minor actinides (MA) from genuine PUREX raffinate has been successfully demonstrated by the TODGA + TBP extractant mixture dissolved in an industrial aliphatic solvent TPH. The process was carried out in centrifugal contactors using an optimized flow‐sheet involving a total of 32 stages, divided into 4 stages for extraction, 12 stages for scrubbing and 16 stages for back‐extraction. Very high feed decontamination factors were obtained (Am, Cm ∼ 40 000) and the recovery of these elements was higher than 99.99%. Of the non‐lanthanide fission products only Y and a small part of Ru were co‐separated into the product fraction together with the lanthanides and the MA.


Solvent Extraction and Ion Exchange | 2009

Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe4‐BTBP Molecule on a Genuine Fuel Solution

Daniel Magnusson; Birgit Christiansen; Mark Foreman; Andreas Geist; Jean-Paul Glatz; Rikard Malmbeck; Giuseppe Modolo; D. Serrano-Purroy; Christian Sorel

Efficient recovery of minor actinides from a genuine spent fuel solution has been successfully demonstrated by the CyMe4‐BTBP/DMDOHEMA extractant mixture dissolved in octanol. The continuous countercurrent process, in which actinides(III) were separated from lanthanides(III), was carried out in laboratory centrifugal contactors using an optimized flow‐sheet involving a total of 16 stages. The process was divided into 9 stages for extraction from a 2 M nitric acid feed solution, 3 stages for lanthanide scrubbing, and 4 stages for actinide back‐extraction. Excellent feed decontamination factors for Am (7000) and Cm (1000) were obtained and the recoveries of these elements were higher than 99.9%. More than 99.9% of the lanthanides were directed to the raffinate except Gd for which 0.32% was recovered in the product.


Solvent Extraction and Ion Exchange | 2008

Demonstration of a TODGA‐Based Continuous Counter‐Current Extraction Process for the Partitioning of Actinides from a Simulated PUREX Raffinate, Part II: Centrifugal Contactor Runs

Giuseppe Modolo; Hanna Asp; Hendrik Vijgen; Rikard Malmbeck; Daniel Magnusson; Christian Sorel

Abstract The efficiency of the partitioning of trivalent actinides from a PUREX raffinate is demonstrated with a TODGA+TBP extractant mixture dissolved in an industrial aliphatic solvent TPH. Based on the results of cold and hot batch extraction studies and with the aid of computer code calculations, a continuous counter‐current process is developed and two flowsheets are tested using miniature centrifugal contactors. The feed solution used is a synthetic PUREX raffinate, spiked with 241Am, 244Cm, 252Cf, 152Eu, and 134Cs. More than 99.9% of the trivalent actinides and lanthanides are extracted and back‐extracted and very high decontamination factors are obtained for most fission products. The co‐extraction of zirconium, molybdenum, and palladium is prevented using oxalic acid and HEDTA. However, 10% of ruthenium is extracted and only 3% is back‐extracted using diluted nitric acid. The experimental steady‐state concentration profiles of important solutes are determined and compared with model calculations and good agreement is generally obtained.


Solvent Extraction and Ion Exchange | 2012

Actinide(III)/Lanthanide(III) Separation Via Selective Aqueous Complexation of Actinides(III) using a Hydrophilic 2,6-Bis(1,2,4-Triazin-3-Yl)-Pyridine in Nitric Acid

Andreas Geist; Udo Müllich; Daniel Magnusson; Peter Kaden; Giuseppe Modolo; Andreas Wilden; Thomas Zevaco

i-SANEX is a process for separating actinides(III) from used nuclear fuels by solvent extraction: Actinides(III) and lanthanides(III) are co-extracted from a PUREX raffinate followed by selective back extraction of actinides(III) from the loaded organic phase. This step requires a complexing agent selective for actinides(III). A hydrophilic sulfonated bis triazinyl pyridine (SO3-Ph-BTP) was synthesized and tested for selective complexation of actinides(III) in nitric acid solution. When co-extracting Am(III) and Eu(III) from nitric acid into TODGA, adding SO3-Ph-BTP to the aqueous phase suppresses Am(III) extraction while Eu(III) is extracted. Separation factors in the range of 1000 are achieved. SO3-Ph-BTP remains active in nitric acid up to 2 mol/L. As a result of this performance, buffering or salting-out agents are not needed in the aqueous phase; nitric acid is used to keep the lanthanides(III) in the TODGA solvent. These properties make SO3-Ph-BTP a suitable candidate for i-SANEX process development.


Radiochimica Acta | 2012

A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate

Giuseppe Modolo; Andreas Wilden; Andreas Geist; Daniel Magnusson; Rikard Malmbeck

Abstract The selective partitioning (P) of long-lived minor actinides fromhighly active waste solutions and their transmutation (T) to short-lived or stable isotopes by nuclear reactions will reduce the long-term hazard of the high-level waste and significantly shorten the time needed to ensure their safe confinement in a repository. The present paper summarizes the on-going research activities at Forschungszentrum Jülich (FZJ), Karlsruher Institut für Technologie (KIT) and Institute for Transuranium Elements (ITU) in the field of actinide partitioning using innovative solvent extraction processes. European research over the last few decades, i.e. in the NEWPART, PARTNEW and EUROPART programmes, has resulted in the development of multi-cycle processes for minor actinide partitioning. These multi-cycle processes are based on the co-separation of trivalent actinides and lanthanides (e.g. by the DIAMEX process), followed by the subsequent actinide(III)/lanthanide(III) group separation in the SANEX process. The current direction of research for the development of innovative processes within the recent European ACSEPT project is discussed additionally. This paper is focused on the development of flow-sheets for recovery of americium and curium from highly active waste solutions. The flow-sheets are verified by demonstration processes, in centrifugal contactors, using synthetic or genuine fuel solutions. The feasibility of the processes is also discussed.


Radiochimica Acta | 2009

Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent

Daniel Magnusson; Birgit Christiansen; Rikard Malmbeck; Jean-Paul Glatz

Abstract The radiolytic degradation of the 6,6′-bis(5,5,8,8tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2′]bipyridine (CyMe4BTBP) based SANEX (selective actinide extraction) solvent has been investigated. As the solvent used in the extraction process is designed to separate trivalent actinides from lanthanides, the radiolytic degradation is mainly due to alpha decay of extracted minor actinide isotopes. A calculation of dose-rates was done by estimating the concentration of minor actinides in the solvent by fuel burn-up calculations and assumptions on dilutions in the subsequent reprocessing steps. The calculations showed that the main isotopes responsible for the dose-rate are 242Cm, 244Cm and 241Am. 242Cm is short-lived and has an impact only at short cooling times before reprocessing of the spent fuel. The dose-rates to a SANEX solvent in the reprocessing of standard spent LWR fuels are burn-up dependent and range from at least 0.03–0.2 kGy/h for UO2 fuels and from 0.4 to 0.8 kGy/h for MOX fuels. Fast reactor fuels yield dose-rates over 1 kGy/h. Based on these results, several radiolysis experiments were carried out in order to compare the effect of low LET external gamma radiation (0.2 kGy/h) and internal alpha radiation with different dose-rates (0.05, 0.2 and 1.0 kGy/h). Significant radiolytic degradation was shown in the gamma radiolysis and in the alpha radiolysis experiment at a dose-rate of 1 kGy/h. These experiments were continued up to an absorbed dose ∼1200 kGy and >300 kGy, respectively. Comparing the alpha radiolysis results for 0.2 kGy/h and 1.0 kGy/h, up to an absorbed dose of ∼120 kGy, no significant difference in the degradation for the different dose rates could be seen. The radiolytic degradation rate for gamma radiation was 40% higher than for alpha radiation.


Solvent Extraction and Ion Exchange | 2013

Direct Selective Extraction of Actinides (III) from PUREX Raffinate using a Mixture of CyMe4BTBP and TODGA as 1-cycle SANEX Solvent Part III: Demonstration of a Laboratory-Scale Counter-Current Centrifugal Contactor Process

Andreas Wilden; Giuseppe Modolo; Christian Schreinemachers; Fabian Sadowski; Steve Lange; Michal Sypula; Daniel Magnusson; Andreas Geist; Frank W. Lewis; Laurence M. Harwood; Michael J. Hudson

The direct selective separation of the trivalent actinides americium and curium from a simulated Plutonium Uranium Refining by EXtraction (PUREX) raffinate solution by a continuous counter-current solvent extraction process using miniature annular centrifugal contactors was demonstrated on a laboratory scale. In a 32-stage spiked test (12 stages for extraction, 16 stages for scrubbing, and 4 stages for Am/Cm stripping), an extractant mixture of CyMe4BTBP and TODGA in a TPH/1-octanol mixture was used. The co-extraction of some fission and corrosion product elements, such as zirconium and molybdenum, was prevented by using oxalic acid. Co-extracted palladium was selectively stripped using an L-cysteine scrubbing solution and the trivalent actinides were selectively stripped using a glycolic acid-based stripping solution. It was demonstrated that a selective extraction and high recovery of > 99.4% of the trivalent minor actinides was achieved with low contamination by fission and corrosion products. The product contained 99.8% of the initial americium and 99.4% of the initial curium content. The spent solvent still contained high concentrations of Cu, Cd, and Ni. The experimental steady-state concentration profiles of important solutes were determined and compared with those from computer-code calculations.


Radiochimica Acta | 2013

Development and demonstration of a new SANEX Partitioning Process for selective actinide(III)/lanthanide(III) separation using a mixture of CyMe4BTBP and TODGA

Giuseppe Modolo; Andreas Wilden; Rikard Malmbeck; H. Daniels; Andreas Geist; Daniel Magnusson

Abstract Within the framework of the European collaborative project ACSEPT, a new SANEX partitioning process was developed at Forschungszentrum Jülich for the separation of the trivalent minor actinides americium, curium and californium from lanthanide fission products in spent nuclear fuels. The development is based on batch solvent extraction studies, single-centrifugal contactor tests and on flow-sheet design by computer code calculations. The used solvent is composed of 6,6´-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo-[1,2-4]trizazin-3-yl)-[2,2´]-bipyridine (CyMe4BTBP) and N,N,N´,N´-tetraoctyldiglycolamide (TODGA) dissolved in n-octanol. A spiked continuous counter-current test was carried out in miniature centrifugal contactors with the aid of a 20-stage flow-sheet consisting of 12 extraction, 4 scrubbing and 4 stripping stages. A product fraction containing more than 99.9% of the trivalent actinides Am(III), Cm(III) and Cf(III) was obtained. High product/feed decontamination factors >1000 were achieved for these actinides. The trivalent lanthanides were directed to the raffinate of the process with the actinide (III) product stream being contaminated with less than 0.5 mass-% in the initial lanthanides.


Radiochimica Acta | 2009

Towards an optimized flow-sheet for a SANEX demonstration process using centrifugal contactors

Daniel Magnusson; Birgit Christiansen; Jean-Paul Glatz; Rikard Malmbeck; Giuseppe Modolo; D. Serrano-Purroy; Christian Sorel

Abstract The design of an efficient process flow-sheet requires accurate extraction data for the experimental set-up used. Often this data is provided as equilibrium data. Due to the small hold-up volume compared to the flow rate in centrifugal contactors the time for extraction is often too short to reach equilibrium D-ratios. In this work single stage kinetics experiments have been carried out to investigate the D-ratio dependence of the flow rate and to compare this with equilibrium batch experiments for a SANEX system based on CyMe4-BTBP. The first centrifuge experiment was run with spiked solutions while in the second a genuine actinide/lanthanide fraction from a TODGA process was used. Three different flow rates were tested with each set-up. The results show that even with low flow rates, only around 9% of the equilibrium D-ratio (Am) was reached for the extraction in the spiked test and around 16% in the hot test (the difference is due to the size of the centrifuges). In the hot test the lanthanide scrubbing was inefficient whereas in the stripping both the actinides and the lanthanides showed good results. Based on these results improvements of the suggested flow-sheet is discussed.


Solvent Extraction and Ion Exchange | 2015

Laboratory-Scale Counter-Current Centrifugal Contactor Demonstration of an Innovative-SANEX Process Using a Water Soluble BTP

Andreas Wilden; Giuseppe Modolo; Peter Kaufholz; Fabian Sadowski; Steve Lange; Michal Sypula; Daniel Magnusson; Udo Müllich; Andreas Geist; Dirk Bosbach

In this paper the development and laboratory-scale demonstration of a novel “innovative-SANEX” (Selective Actinide Extraction) process using annular centrifugal contactors is presented. In this strategy, a solvent comprising the N,N,N’,N’-tetraoctyldiglycolamide (TODGA) extractant with addition of 5 vol.-% 1-octanol showed very good extraction efficiency of Am(III) and Cm(III) together with the trivalent lanthanides (Ln(III)) from simulated Plutonium Uranium Refining by Extraction (PUREX) raffinate solution without 3rd phase formation. Cyclohexanediaminetetraacetic acid (CDTA) was used as masking agent to prevent the co-extraction of Zr and Pd. An(III) and Ln(III) were co-extracted from simulated PUREX raffinate, and the loaded solvent was subjected to several stripping steps. The An(III) were selectively stripped using the hydrophilic complexing agent SO3-Ph-BTP (2,6-bis(5,6-di(sulfophenyl)-1,2,4-triazin-3-yl)pyridine). For the subsequent stripping of the Ln(III), a citric acid based solution was used. A 32-stage process flow-sheet was designed using computer-code calculations and tested in annular miniature centrifugal contactors in counter-current mode. The innovative SANEX process showed excellent performance for the recovery of An(III) from simulated High Active Raffinate (HAR) solution and separation from the fission and activation products. ≥ 99.8% An(III) were recovered with only low impurities (0.4% Ru, 0.3% Sr, 0.1% Ln(III)). The separation from the Ln(III) was excellent and the Ln(III) were efficiently stripped by the citrate-based stripping solution. The only major contaminant in the spent solvent was Ru, with 14.7% of the initial amount being found in the spent solvent. Solvent cleaning and recycling therefore has to be further investigated. This successful spiked test demonstrated the possibility of separating An(III) directly from HAR solution in a single cycle which is a great improvement over the former multi-cycle strategy. The results of this test are presented and discussed.

Collaboration


Dive into the Daniel Magnusson's collaboration.

Top Co-Authors

Avatar

Andreas Geist

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Modolo

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Rikard Malmbeck

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar

Andreas Wilden

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Birgit Christiansen

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar

Christian Ekberg

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gunnar Skarnemark

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Glatz

Institute for Transuranium Elements

View shared research outputs
Top Co-Authors

Avatar

Michal Sypula

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Udo Müllich

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge