Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Malouli is active.

Publication


Featured researches published by Daniel Malouli.


Science | 2013

Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms

Scott G. Hansen; Jonah B. Sacha; Colette M. Hughes; Julia C. Ford; Benjamin J. Burwitz; Isabel Scholz; Roxanne M. Gilbride; Matthew S. Lewis; Awbrey N. Gilliam; Abigail B. Ventura; Daniel Malouli; Guangwu Xu; Rebecca Richards; Nathan Whizin; Jason S. Reed; Katherine B. Hammond; Miranda Fischer; John M. Turner; Alfred W. Legasse; Michael K. Axthelm; Paul T. Edlefsen; Jay A. Nelson; Jeffrey D. Lifson; Klaus Früh; Louis J. Picker

Introduction CD8+ T cell responses focus on a small fraction of total pathogen-encoded peptides, which are similar among individuals with shared major histocompatibility complex (MHC) alleles. This focus can limit immune control of genetically flexible pathogens, such as HIV and SIV, because CD8+ T cells in most infected subjects do not target sequences required for pathogen fitness, resulting in viral escape. Although a vaccine capable of broadening or redirecting CD8+ T cell epitope targeting to prevent viral escape would be highly advantageous, it remains unclear whether this targeting can be diverted from its default pattern during priming. Fibroblast-adapted RhCMV/gag vectors elicit MHC class II–restricted CD8+ T cells, greatly expanding the breadth of the response. (Top) Differential inhibition of SIVgag-specific CD8+ T cells from SIV+, fibroblast-adapted RhCMV/gag vector–vaccinated, and tropism-repaired RhCMV/gag vector–vaccinated rhesus macaques by MHC-I versus MHC-II blockade. (Bottom) Responses to consecutive SIVgag 15mer peptides in the indicated animals, classified by sensitivity to MHC-I versus MHC-II blockade. Methods We used intracellular cytokine analysis to compare the epitope targeting of SIV-specific CD8+ T cell responses in rhesus macaques with controlled SIV infection or after vaccination with either conventional SIV vaccines or rhesus cytomegalovirus (RhCMV) vectors. RhCMV vectors have been associated with stringent control of SIV challenge in the absence of protective MHC alleles. Results Fibroblast-adapted RhCMV/SIV vectors elicited SIV-specific CD8+ T cells that failed to target any canonical epitopes associated with SIV infection or conventional SIV vaccination. Instead, they recognized distinct epitopes characterized by extraordinary breadth (greater than that of conventional vaccines by a factor of >3), MHC class II (MHC-II) restriction (63% of epitopes), and high promiscuity (epitopes common to most or all responses in vaccinated macaques). These unconventionally targeted CD8+ T cell responses recognized autologous SIV-infected cells, indicating that processing and presentation of the unconventional epitopes is CMV-independent. However, CMV gene expression was responsible for directing epitope specificity of CD8+ T cells during priming. The induction of canonical SIV epitope–specific CD8+ T cell responses was specifically suppressed by expression of the Rh189/US11 gene, and the promiscuous MHC-I– and MHC-II–restricted CD8+ T cell responses occurred only in the absence of the Rh157.4–.6/UL128–131 genes involved in CMV tropism for nonfibroblasts. Discussion These findings suggest that CD8+ T cell recognition is more flexible than had been thought, and that the focused epitope recognition profiles of conventional CD8+ T cell responses may be primarily restricted by immunoregulation during priming (which can be subverted by CMV) rather than by intrinsic limitations in antigen processing/presentation or in T cell receptor repertoire. The ability of CMVs with different genetic modifications to differentially elicit CD8+ T cell responses with divergent patterns of epitope recognition raises the possibility of a CMV vector–based vaccine platform with programmable CD8+ T cell epitope targeting, including vectors that can selectively elicit CD8+ T cell responses targeting conventional or unconventional epitopes. Because the latter would be unaffected by escape mutations arising during natural infection, these vectors would be well suited for therapeutic vaccine applications. CMV Breaks All the Rules One vaccine strategy being pursued against HIV is to generate protection that is dependent on cell-mediated, rather than humoral, immune responses. A cytomegalovirus (CMV)–vectored vaccine that expresses simian immunodeficiency virus (SIV) antigens exhibits stringent and durable viral control upon SIV challenge in approximately half of vaccinated rhesus macaques. Hansen et al. (10.1126/science.1237874, see the Perspective by Goonetilleke and McMichael) sought to determine the basis for the protection and discovered that the CD8+ T cell response in vaccinated monkeys does not target canonical SIV epitopes, which SIV is known to escape, but rather generates a broad, promiscuous response. A vaccine that uses one virus to deliver components of a second virus elicits T cells that recognize noncanonical epitopes. [Also see Perspective by Goonetilleke and McMichael] CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein–expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope–specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I– and class II–restricted CD8+ T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition.


Current Topics in Microbiology and Immunology | 2008

Cytomegalovirus immune evasion

Colin Powers; Victor R. DeFilippis; Daniel Malouli; Klaus Früh

Human cytomegalovirus (HCMV) has become a paradigm for viral immune evasion due to its unique multitude of immune-modulatory strategies. HCMV modulates the innate as well as adaptive immune response at every step of its life cycle. It dampens the induction of antiviral interferon-induced genes by several mechanisms. Further striking is the multitude of genes and strategies devoted to modulating and escaping the cellular immune response. Several genes are independently capable of inhibiting antigen presentation to cytolytic T cells by downregulating MHC class I. Recent data revealed an astounding variety of methods in triggering or inhibiting activatory and inhibitory receptors found on NK cells, NKT cells, T cells as well as auxiliary cells of the immune system. The multitude and complexity of these mechanisms is fascinating and continues to reveal novel insights into the host-pathogen interaction and novel cell biological and immunological concepts.


Science | 2016

Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex-E

Scott G. Hansen; Helen L. Wu; Benjamin J. Burwitz; Colette M. Hughes; Katherine B. Hammond; Abigail B. Ventura; Jason S. Reed; Roxanne M. Gilbride; Emily Ainslie; David W. Morrow; Julia C. Ford; Andrea N. Selseth; Reesab Pathak; Daniel Malouli; Alfred W. Legasse; Michael K. Axthelm; Jay A. Nelson; Geraldine Gillespie; Lucy C. Walters; Simon Brackenridge; Hannah R. Sharpe; Cesar A. López; Klaus Früh; Bette T. Korber; Andrew J. McMichael; S. Gnanakaran; Jonah B. Sacha; Louis J. Picker

An unconventional route to protection One promising approach toward an HIV-1 vaccine involves infecting people with cytomegalovirus engineered to express proteins from HIV-1. This approach, which works by eliciting virus-killing CD8+ T cells, provides robust protection in nonhuman primate models. Hansen et al. have found out why this approach is so effective. Normally, peptide antigens presented by major histocompatibility complex-1a (MHC-Ia) activate CD8+ T cells. In vaccinated monkeys, however, CD8+ T cells reacted to peptide antigens presented by MHC-E molecules instead. Moreover, MHC-E could present a much wider range of peptides than MHC-Ia. Science, this issue p. 714 Nonclassical major histocompatibility complex E molecules can present highly diverse peptide epitopes to CD8+ T cells. Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E–restricted presentation of highly varied peptide epitopes to CD8αβ+ T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E–restricted CD8+ T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.


PLOS Pathogens | 2011

BST2/tetherin enhances entry of human cytomegalovirus

Kasinath Viswanathan; M. Shane Smith; Daniel Malouli; Mandana Mansouri; Jay A. Nelson; Klaus Früh

Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposis sarcoma associated herpesvirus (KSHV), indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV) from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.


Journal of Virology | 2012

Reevaluation of the Coding Potential and Proteomic Analysis of the BAC-Derived Rhesus Cytomegalovirus Strain 68-1

Daniel Malouli; Ernesto S. Nakayasu; Kasinath Viswanathan; David G. Camp; W. L. William Chang; Peter A. Barry; Richard D. Smith; Klaus Früh

ABSTRACT Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By comparing the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, virion proteomics independently validated the revised ORF predictions, since only proteins that were conserved across OWM CMVs could be detected. Taken together, these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs than previously assumed.


PLOS Pathogens | 2015

Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms

Marieke C. Verweij; Mary Wellish; Travis Whitmer; Daniel Malouli; Martin Lapel; Stipan Jonjić; Juergen Haas; Victor R. DeFilippis; Ravi Mahalingam; Klaus Früh

Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses.


Journal of Clinical Investigation | 2014

Cytomegalovirus pp65 limits dissemination but is dispensable for persistence

Daniel Malouli; Scott G. Hansen; Ernesto S. Nakayasu; Emily Marshall; Colette M. Hughes; Abigail B. Ventura; Roxanne M. Gilbride; Matthew S. Lewis; Guangwu Xu; Craig N. Kreklywich; Nathan Whizin; Miranda Fischer; Alfred W. Legasse; Kasinath Viswanathan; Don C. Siess; David G. Camp; Michael K. Axthelm; Christoph A. Kahl; Victor R. DeFilippis; Richard D. Smith; Daniel N. Streblow; Louis J. Picker; Klaus Früh

The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased defective particle formation, the protein composition of secreted virions was largely unchanged. Interestingly, pp65 was not required for primary and persistent infection in animals. Immune responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are required for protection. However, pp65-specific immunity was crucial for controlling viral dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses alone do not recapitulate the protective effect of natural infection.


Nature Medicine | 2018

Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine

Scott G. Hansen; Guangwu Xu; Julia C. Ford; Emily Marshall; Daniel Malouli; Roxanne M. Gilbride; Colette M. Hughes; Abigail B. Ventura; Emily Ainslie; Kurt T Randall; Andrea N. Selseth; Parker Rundstrom; Lauren Herlache; Matthew S. Lewis; Haesun Park; Shannon L. Planer; John M. Turner; Miranda Fischer; Christina Armstrong; Robert C Zweig; Joseph Valvo; Jackie Braun; Smitha Shankar; Lenette L. Lu; Andrew W. Sylwester; Alfred W. Legasse; Martin Messerle; Michael A. Jarvis; Lynn M. Amon; Alan Aderem

Despite widespread use of the bacille Calmette–Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)—which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4+ and CD8+ memory T cell responses—can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.


Journal of Virology | 2015

The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with IκBα Degradation

Travis Whitmer; Daniel Malouli; Luke S. Uebelhoer; Victor R. DeFilippis; Klaus Früh; Marieke C. Verweij

ABSTRACT Varicella-zoster virus (VZV) causes chickenpox upon primary infection and establishes latency in ganglia. Reactivation from latency causes herpes zoster, which may be complicated by postherpetic neuralgia. Innate immunity mediated by interferon and proinflammatory cytokines represents the first line of immune defense upon infection and reactivation. VZV is known to interfere with multiple innate immune signaling pathways, including the central transcription factor NF-κB. However, the role of these inhibitory mechanisms in vivo is unknown. Simian varicella virus (SVV) infection of rhesus macaques recapitulates key aspects of VZV pathogenesis, and this model thus permits examination of the role of immune evasion mechanisms in vivo. Here, we compare SVV and VZV with respect to interference with NF-κB activation. We demonstrate that both viruses prevent ubiquitination of the NF-κB inhibitor IκBα, whereas SVV additionally prevents IκBα phosphorylation. We show that the ORF61 proteins of VZV and SVV are sufficient to prevent IκBα ubiquitination upon ectopic expression. We further demonstrate that SVV ORF61 interacts with β-TrCP, a subunit of the SCF ubiquitin ligase complex that mediates the degradation of IκBα. This interaction seems to inactivate SCF-mediated protein degradation in general, since the unrelated β-TrCP target Snail is also stabilized by ORF61. In addition to ORF61, SVV seems to encode additional inhibitors of the NF-κB pathway, since SVV with ORF61 deleted still prevented IκBα phosphorylation and degradation. Taken together, our data demonstrate that SVV interferes with tumor necrosis factor alpha (TNF-α)-induced NF-κB activation at multiple levels, which is consistent with the importance of these countermechanisms for varicella virus infection. IMPORTANCE The role of innate immunity during the establishment of primary infection, latency, and reactivation by varicella-zoster virus (VZV) is incompletely understood. Since infection of rhesus macaques by simian varicella virus (SVV) is used as an animal model of VZV infection, we characterized the molecular mechanism by which SVV interferes with innate immune activation. Specifically, we studied how SVV prevents activation of the transcription factor NF-κB, a central factor in eliciting proinflammatory responses. The identification of molecular mechanisms that counteract innate immunity might ultimately lead to better vaccines and treatments for VZV, since overcoming these mechanisms, either by small-molecule inhibition or by genetic modification of vaccine strains, is expected to reduce the pathogenic potential of VZV. Moreover, using SVV infection of rhesus macaques, it will be possible to study how increasing the vulnerability of varicella viruses to innate immunity will impact viral pathogenesis.


PLOS Pathogens | 2016

Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus.

Elizabeth R. Sturgill; Daniel Malouli; Scott G. Hansen; Benjamin J. Burwitz; Seongkyung Seo; Christine L. Schneider; Jennie L. Womack; Marieke C. Verweij; Abigail B. Ventura; Amruta Bhusari; Krystal M. Jeffries; Alfred W. Legasse; Michael K. Axthelm; Amy W. Hudson; Jonah B. Sacha; Louis J. Picker; Klaus Früh

The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection.

Collaboration


Dive into the Daniel Malouli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfred W. Legasse

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge