Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Marcellino is active.

Publication


Featured researches published by Daniel Marcellino.


Progress in Neurobiology | 2010

The discovery of central monoamine neurons gave volume transmission to the wired brain

Kjell Fuxe; Annica Dahlström; Gösta Jonsson; Daniel Marcellino; Michele Guescini; Mauro Dam; Paul R. Manger; Luigi F. Agnati

The dawn of chemical neuroanatomy in the CNS came with the discovery and mapping of the central dopamine, noradrenaline and 5-hydroxytryptamine neurons by means of transmitter histochemistry using the Falck-Hillarp formaldehyde fluorescence technique in the early 1960s. Our mapping of the central monoamine neurons was continued and further established with tyrosine hydroxylase, dopa decarboxylase and dopamine-beta-hydroxylase immunohistochemistry in collaboration with Menek Goldstein and Tomas Hökfelt. During recent years an evolutionary constraint in the nuclear parcellation of the DA, NA and 5-HT neurons was demonstrated in the order Rodentia and other mammals. The abundant existence of global monoamine varicose nerve terminal networks synthesizing, storing and releasing monoamines in various parts of the CNS, including the release of DA by tubero-infundibular DA neurons as a prolactin inhibitory factor from the external layer of the median eminence into the portal vessels and the appearance of extraneuronal DA fluorescence after, e.g., treatment with amphetamine in nialamide pretreated rats (Falck-Hillarp technique) were also remarkable observations. These observations and others like the discovery of transmitter-receptor mismatches opened up the possibility that monoamines were modulating the wired brain, built up mainly by glutamate and GABA neurons, through diffusion and flow in the extracellular fluid of the extracellular space and in the CSF. This transmission also involved long-distance channels along myelinated fibers and blood vessels and was called volume transmission (VT). The extracellular space (ECS), filled with a 3D matrix, plays a fundamental role in this communication. Energy gradients for signal migration in the ECS are produced via concentration, temperature and pressure gradients, the latter two allowing a flow of the ECF and CSF carrying the VT signals. The differential properties of the wiring transmission (WT) and VT circuits and communication channels will be discussed as well as the role of neurosteroids and oxytocin receptors in volume transmission leading to a new understanding of the integrative actions of neuronal-glial networks. The role of tunneling nanotubes with mitochondrial transfer in CNS inter alia as part of neuron-glia interactions will also be introduced representing a novel type of wiring transmission. The impact of the technicolour approach to the connectome for the future characterization of the wired networks of the brain is emphasized.


Journal of Molecular Neuroscience | 2005

Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function

Kjell Fuxe; Sergi Ferré; Meritxell Canals; Maria Torvinen; Anton Terasmaa; Daniel Marcellino; Steven R. Goldberg; William A. Staines; Kirsten X. Jacobsen; Carmen Lluis; Amina S. Woods; Luigi F. Agnati; Rafael Franco

The existence of A2A-D2 heteromeric complexes is based on coimmunoprecipitation studies and on fluorescence resonance energy transfer and bioluminescence resonance energy transfer analyses. It has now become possible to show that A2A and D2 receptors also coimmunoprecipitate in striatal tissue, giving evidence for the existence of A2A-D2 heteromeric receptor complexes also in rat striatal tissue. The analysis gives evidence that these heteromers are constitutive, as they are observed in the absence of A2A and D2 agonists. The A2A-D2 heteromers could either be A2A-D2 heterodimers and/or higher-order A2A-D2 hetero-oligomers. In striatal neurons there are probably A2A-D2 heteromeric complexes, together with A2A-D2 homomeric complexes in the neuronal surface membrane. Their stoichiometry in various microdomains will have a major role in determining A2A and D2 signaling in the striatopallidal GABA neurons. Through the use of D2/D1 chimeras, evidence has been obtained that the fifth transmembrane (TM) domain and/or the 13 of the D2 receptor are part of the A2A-D2 receptor interface, where electrostatic epitope-epitope interactions involving the N-terminal part of 13 of the D2 receptor (arginine-rich epitope) play a major role, interacting with the carboxyl terminus of the A2A receptor. Computerized modeling of A2A-D2 heteromers are in line with these findings. It seems likely that A2A receptor-induced reduction of D2 receptor recognition, G protein coupling, and signaling, as well as the existence of A2A-D2 co-trafficking, are the consequence of the existence of an A2A-D2 receptor heteromer. The relevance of A2A-D2 heteromeric receptor complexes for Parkinson’s disease and schizophrenia is emphasized as well as for the treatment of these diseases. Finally, recent evidence for the existence of antagonistic A2A-D3 heteromeric receptor complexes in cotransfected cell lines has been summarized.


Brain Research Reviews | 2007

From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission ☆

Kjell Fuxe; Annica Dahlström; Malin Höistad; Daniel Marcellino; Anders Jansson; Alicia Rivera; Zaida Díaz-Cabiale; Kirsten X. Jacobsen; Barbro Tinner-Staines; Beth Hagman; Giuseppina Leo; William A. Staines; Diego Guidolin; Jan Kehr; Susanna Genedani; Natale Belluardo; Luigi F. Agnati

After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.


Progress in Neurobiology | 2010

Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis

Miguel Pérez de la Mora; Andrea Gallegos-Cari; Yexel Arizmendi-García; Daniel Marcellino; Kjell Fuxe

Dopamine plays an important role in fear and anxiety modulating a cortical brake that the medial prefrontal cortex exerts on the anxiogenic output of the amygdala and have an important influence on the trafficking of impulses between the basolateral (BLA) and central nuclei (CeA) of amygdala. Dopamine afferents from the ventral tegmental area innervate preferentially the rostrolateral main and paracapsular intercalated islands as well as the lateral central nucleus of amygdala activating non-overlapping populations of D1- and D2-dopamine receptors located in these structures. Behaviorally, the intra-amygdaloid infusion of D1 agonists and antagonists elicits anxiogenic and anxiolytic effects respectively on conditioned and non-conditioned models of fear/anxiety suggesting an anxiogenic role for D1 receptors in amygdala. The analysis of the effects of D2 agonists and antagonists suggest that depending of the nature of the threat the animal experiences in anxiety models either anxiogenic or anxiolytic effects are elicited. It is suggested that D1- and D2-dopamine receptors in the amygdala may have a differential role in the modulation of anxiety. The possibility is discussed that D1 receptors participate in danger recognition facilitating conditioned-unconditioned associations by the retrieval of the affective properties of the unconditioned stimuli, and in the control of impulse trafficking from cortical and BLA regions to BLA and CeA nuclei respectively whereas D2 receptors have a role in setting up adaptive responses to cope with aversive environmental stimuli.


Journal of Biological Chemistry | 2008

Identification of Dopamine D1–D3 Receptor Heteromers: INDICATIONS FOR A ROLE OF SYNERGISTIC D1–D3 RECEPTOR INTERACTIONS IN THE STRIATUM*

Daniel Marcellino; Sergi Ferré; Vicent Casadó; Antonio Cortés; Bernard Le Foll; Carmen Mazzola; Filippo Drago; Oliver Saur; Holger Stark; Aroa Soriano; Chanel Barnes; Steven R. Goldberg; Carme Lluis; Kjell Fuxe; Rafael Franco

The function of dopamine D3 receptors present in the striatum has remained elusive. In the present study evidence is provided for the existence of dopamine D1–D3 receptor heteromers and for an intramembrane D1–D3 receptor cross-talk in living cells and in the striatum. The formation of D1–D3 receptor heteromers was demonstrated by fluorescence resonance energy transfer and bioluminescence resonance energy transfer techniques in transfected mammalian cells. In membrane preparations from these cells, a synergistic D1–D3 intramembrane receptor-receptor interaction was observed, by which D3 receptor stimulation enhances D1 receptor agonist affinity, indicating that the D1–D3 intramembrane receptor-receptor interaction is a biochemical characteristic of the D1–D3 receptor heteromer. The same biochemical characteristic was also observed in membrane preparations from brain striatum, demonstrating the striatal co-localization and heteromerization of D1 and D3 receptors. According to the synergistic D1–D3 intramembrane receptor-receptor interaction, experiments in reserpinized mice showed that D3 receptor stimulation potentiates D1 receptor-mediated behavioral effects by a different mechanism than D2 receptor stimulation. The present study shows that a main functional significance of the D3 receptor is to obtain a stronger dopaminergic response in the striatal neurons that co-express the two receptors.


Movement Disorders | 2007

Adenosine A2A receptors, dopamine D2 receptors and their interactions in Parkinson's disease

Kjell Fuxe; Daniel Marcellino; Susanna Genedani; Luigi F. Agnati

Future therapies in Parkinsons disease may substantially build on the existence of intra‐membrane receptor–receptor interactions in DA receptor containing heteromeric receptor complexes. The A2A/D2 heteromer is of substantial interest in view of its specific location in cortico‐striatal glutamate terminals and in striato‐pallidal GABA neurons. Antagonistic A2A/D2 receptor interactions in this heteromer demonstrated at the cellular level, and at the level of the striato‐pallidal GABA neuron and at the network level made it possible to suggest A2A antagonists as anti‐parkinsonian drugs. The major mechanism is an enhancement of D2 signaling leading to attenuation of hypokinesia, tremor, and rigidity in models of Parkinsons disease with inspiring results in two clinical trials. Other interactions are antagonism at the level of the adenylyl cyclase; heterologous sensitization at the A2A activated adenylyl cyclase by persistent D2 activation and a compensatory up‐regulation of A2A receptors in response to intermittent Levodopa treatment. An increased dominance of A2A homomers over D2 homomers and A2A/D2 heteromers after intermittent Levodopa treatment may therefore contribute to development of Levodopa induced dyskinesias and to the wearing off of the therapeutic actions of Levodopa giving additional therapeutic roles of A2A antagonists. Their neuroprotective actions may involve an increase in the retrograde trophic signaling in the nigro‐striatal DA system.


Journal of Neurochemistry | 2003

Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer.

Meritxell Canals; Javier Burgueño; Daniel Marcellino; Nuria Cabello; Enric I. Canela; Josefa Mallol; Luigi F. Agnati; Sergi Ferré; Michel Bouvier; Kjell Fuxe; Francisco Ciruela; Carmen Lluis; Rafael Franco

The results presented in this paper show that adenosine A2A receptor (A2AR) form homodimers and that homodimers but not monomers are the functional species at the cell surface. Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques have been used to demonstrate in transfected HEK293 cells homodimerization of A2AR, which are heptaspanning membrane receptors with enriched expression in striatum. The existence of homodimers at the cell surface was demonstrated by time‐resolved FRET. Although agonist activation of the receptor leads to the formation of receptor clusters, it did not affect the degree of A2AR–A2AR dimerization. Both monomers and dimers were detected by immunoblotting in cell extracts. However, cell surface biotinylation of proteins has made evident that more than 90% of the cell surface receptor is in its dimeric form. Thus, it seems that homodimers are the functional form of the receptor present on the plasma membrane. A deletion mutant version of the A2A receptor, lacking its C‐terminal domain, was also able to form both monomeric and dimeric species when cell extracts from transfected cells were analyzed by immunoblotting. This suggests that the C‐terminal tail does not participate in the dimerization. This is relevant as the C‐terminal tail of A2AR is involved in heteromers formed by A2AR and dopamine D2 receptors. BRET ratios corresponding to A2AR–A2AR homodimers were higher than those encountered for heterodimers formed by A2AR and dopamine D2 receptors. As A2AR and dopamine D2 receptors do indeed interact, these results indicate that A2AR homodimers are the functional species at the cell surface and that they coexist with A2AR/D2 receptor heterodimers.


Neuropharmacology | 2008

Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis.

Daniel Marcellino; Paulina Carriba; Małgorzata Filip; Anders Borgkvist; Małgorzata Frankowska; Inmaculada Bellido; Sergio Tanganelli; Christa E. Müller; Gilberto Fisone; Carme Lluis; Luigi F. Agnati; Rafael Franco; Kjell Fuxe

In vitro results show the ability of the CB(1) receptor agonist CP 55,940 to reduce the affinity of D(2) receptor agonist binding sites in both the dorsal and ventral striatum including the nucleus accumbens shell. This antagonistic modulation of D(2) receptor agonist affinity was found to remain and even be enhanced after G-protein activation by Gpp(NH)p. Using the FRET technique in living HEK-293T cells, the formation of CB(1)-D(2) receptor heteromers, independent of receptor occupancy, was demonstrated. These data thereby indicate that the antagonistic intramembrane CB(1)/D(2) receptor-receptor interactions may occur in CB(1)/D(2) formed heteromers. Antagonistic CB(1)/D(2) interactions were also discovered at the behavioral level through an analysis of quinpirole-induced locomotor hyperactivity in rats. The CB(1) receptor agonist CP 55,940 at a dose that did not change basal locomotion was able to block quinpirole-induced increases in locomotor activity. In addition, not only the CB(1) receptor antagonist rimonobant but also the specific A(2A) receptor antagonist MSX-3 blocked the inhibitory effect of CB(1) receptor agonist on D(2)-like receptor agonist-induced hyperlocomotion. Taken together, these results give evidence for the existence of antagonistic CB(1)/D(2) receptor-receptor interactions within CB(1)/D(2) heteromers in which A(2A) receptors may also participate.


Journal of Neural Transmission | 2007

Intramembrane receptor-receptor interactions: a novel principle in molecular medicine

Kjell Fuxe; Meritxell Canals; M. Torvinen; Daniel Marcellino; Anton Terasmaa; Susanna Genedani; Giuseppina Leo; Diego Guidolin; Zaida Díaz-Cabiale; Alicia Rivera; Linda Lundström; Ülo Langel; José Ángel Narváez; Sergio Tanganelli; Carmen Lluis; Sergi Ferré; Amina S. Woods; Rafael Franco; Luigi F. Agnati

Summary.In 1980/81 Agnati and Fuxe introduced the concept of intramembrane receptor–receptor interactions and presented the first experimental observations for their existence in crude membrane preparations. The second step was their introduction of the receptor mosaic hypothesis of the engram in 1982. The third step was their proposal that the existence of intramembrane receptor–receptor interactions made possible the integration of synaptic (WT) and extrasynaptic (VT) signals. With the discovery of the intramembrane receptor–receptor interactions with the likely formation of receptor aggregates of multiple receptors, so called receptor mosaics, the entire decoding process becomes a branched process already at the receptor level in the surface membrane. Recent developments indicate the relevance of cooperativity in intramembrane receptor–receptor interactions namely the presence of regulated cooperativity via receptor–receptor interactions in receptor mosaics (RM) built up of the same type of receptor (homo-oligomers) or of subtypes of the same receptor (RM type1). The receptor–receptor interactions will to a large extent determine the various conformational states of the receptors and their operation will be dependent on the receptor composition (stoichiometry), the spatial organization (topography) and order of receptor activation in the RM. The biochemical and functional integrative implications of the receptor–receptor interactions are outlined and long-lived heteromeric receptor complexes with frozen RM in various nerve cell systems may play an essential role in learning, memory and retrieval processes. Intramembrane receptor–receptor interactions in the brain have given rise to novel strategies for treatment of Parkinson’s disease (A2A and mGluR5 receptor antagonists), schizophrenia (A2A and mGluR5 agonists) and depression (galanin receptor antagonists). The A2A/D2, A2A/D3 and A2A/mGluR5 heteromers and heteromeric complexes with their possible participation in different types of RM are described in detail, especially in the cortico-striatal glutamate synapse and its extrasynaptic components, together with a postulated existence of A2A/D4 heteromers. Finally, the impact of intramembrane receptor–receptor interactions in molecular medicine is discussed outside the brain with focus on the endocrine, the cardiovascular and the immune systems.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Direct involvement of σ-1 receptors in the dopamine D1 receptor-mediated effects of cocaine

Gemma Navarro; Estefanía Moreno; Marisol S. Aymerich; Daniel Marcellino; Peter J. McCormick; Josefa Mallol; Antoni Cortés; Vicent Casadó; Enric I. Canela; Jordi Ortiz; Kjell Fuxe; Carmen Lluis; Sergi Ferré; Rafael Franco

It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D1 receptors (D1Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D1R and σ1R were found to heteromerize in transfected cells, where cocaine robustly potentiated D1R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D1R stimulation in a dopamine transporter-independent and σ1R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ1R KO mice, providing evidence for the existence of σ1R-D1R heteromers in the brain. Therefore, these results provide a molecular explanation for which D1R plays a more significant role in the behavioral effects of cocaine, through σ1R-D1R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.

Collaboration


Dive into the Daniel Marcellino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi F. Agnati

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Amina S. Woods

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergi Ferré

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Lluis

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge