Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Micallef is active.

Publication


Featured researches published by Daniel Micallef.


48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 4-7 January 2010; AIAA 2010-462 | 2010

Validating BEM, Direct and Inverse Free Wake Models with the MEXICO Experiment

Daniel Micallef; M. Kloosterman; Carlos Simao Ferreira; Tonio Sant; G.J.W. van Bussel

The primary objective of the MEXICO (Model Experiments in Controlled Conditions) project was to generate experimental data for validation of models for wind turbines. Kulite©pressure sensors were used for pressure measurements while Particle Image Velocimetry was used with the aim of tracking the tip vortex trajectory. The pressure measurements were carried out for both axial and yawed flow conditions with yaw angles of 15o; 30o and 45o. For the Particle Image Velocimetry measurements data was gathered for axial flow and for the ±30o yaw cases at a single tip speed ratio. In this work, an inverse free wake lifting line model, a direct free wake model and a BEM model are validated with the MEXICO data. Particular emphasis is placed on the study of yawed flow conditions. The inverse free-wake model makes use of the experimental loads as input in order to find the distribution of inductions and angle of attack. The predictive capability of BEM may therefore be assessed based on this. Validation of the inverse free-wake model was performed by investigating the stagnation pressureprediction as well as the vortex trajectory prediction. This was done by means of the PIV data gathered from the MEXICO experiment. This PIV data was also used for validation purposes of the direct free-wake model. The differences in the angle of attack distributions in yawed flow with these models was studied in order to assess the difference in results between the use of 2D and 3D airfoil data.


Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications | 2016

Local heat generation and material flow in friction stir welding of mild steel assemblies

Daniel Micallef; Duncan Camilleri; Athanasios Toumpis; Alexander Galloway; Larbi Arbaoui

In friction stir welding, assemblies are joined by means of plasticising, shearing and stirring non-molten material. The heat generation is directly related to the viscous behaviour of plasticised material, through coupled Navier–Stokes thermo-fluid flow stress equations. A significant amount of research has been conducted on aluminium friction stir welding but studies on mild steel assemblies are limited. The aim of this work is to understand the influence of the tool rotational and traverse speed on the resulting material stir zone shape and the heat power generated in friction stir welding of mild steel assemblies. A numerical and experimental approach is adopted in this study. Material visco-plastic properties are primarily established experimentally and are then applied to a computational fluid dynamics model through user-defined material flow stress constitutive laws. The model was further validated through a series of thermocouple and macrograph measurements and later on used to fulfil the aims of this work. This study identifies that the total heat generated for different welding parameters follows a non-linear variation with radial and angular tool position. These results provide a platform for the accurate definition of heat flux inputs and thermal strains to global thermo-elasto-plastic models, replacing more simplified linear specifications currently used in the literature.


Journal of Physics: Conference Series, 555 (2014), 012074 | 2014

The origins of a wind turbine tip vortex

Daniel Micallef; B. Akay; C.J. Simao Ferreira; Tonio Sant; G.J.W. van Bussel

The tip vortex of a wind turbine rotor blade originates as a result of a complex distribution of vorticity along the blade tip thickness. While the tip vortex evolution was extensively studied previously in other work, the mechanism of the initiation of the tip vorticity in a 3D rotating environment is still somewhat obscured due to lack of detailed experimental evidence. This paper therefore aims at providing an understanding of how tip vorticity is formed at the wind turbine blade tip and what happens just behind the tip trailing edge. Stereo Particle Image Velocimetry (SPIV) is used to measure the flow field at the tip of a 2m diameter, two- bladed rotor at the TU Delft Open Jet Facility (OJF). The rotor has a rectangular blade tip. Spanwise measurements were performed for both axial and yawed flow conditions with a very small azimuthal increment. A 3D, unsteady, potential flow panel method is also used for the purpose of better understanding the tip bound vorticity. A validation study is carried out with positive results. This paper is focused on axial flow results. A complex distribution of vorticity is found along the blade tip thickness. Just after release, the tip vortex becomes almost immediately round and well defined. Observations from the MEXICO rotor are confirmed again by a slight inboard convection of the tip vortex. This is explained by means of the effect of chordwise vorticity at the tip from the numerical solutions. The results presented in this work suggest that a more physical interpretation of the tip loss effect is required. Currently, inclusion of tip effects are based primarily on either wake induced effects or on an empirical 3D correction for airfoil data. This research should stimulate a more rigorous approach, where the effects of the blade tip chordwise vorticity are implemented in tip correction models.


Journal of Thermal Stresses | 2015

Thermal Stresses and Distortion Developed in Mild Steel DH36 Friction Stir-Welded Plates: An Experimental and Numerical Assessment

Duncan Camilleri; Daniel Micallef; Pierluigi Mollicone

Welding processes involve localized heating which in turn give rise to thermal stresses and distortion. Friction stir welding (FSW) is a solid state joining process where temperatures below melting are experienced. Nonetheless, some degree of thermal heating and consequently thermal stresses develop at the joint. This study aims to quantify the stresses developed in friction stir welding of mild steel DH36 plates, through an experimental and numerical investigation. The temperatures and transient strains developed during FSW, are experimentally measured and used to validate thermo-elastoplastic numerical models. These models are used to investigate the evolution of thermal stresses and distortion for different welding parameters.


Renewable Energy | 2018

Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions

H. Rahimi; J.G. Schepers; Wen Zhong Shen; N. Ramos García; M.S. Schneider; Daniel Micallef; C.J. Simao Ferreira; E. Jost; Linda Klein; I. Herráez

This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well as shortcomings, are presented. The investigations are performed for two 10MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though some deviations are observed at the root and tip regions of the blades. This indicates that CFD results can be used for the calibration of induction modeling for Blade Element Momentum (BEM) tools. Moreover, using any of the proposed methods, it is possible to obtain airfoil characteristics for lift and drag coefficients as a function of the angle of attack.


Archive | 2016

A Review of Wind Turbine Yaw Aerodynamics

Daniel Micallef; Tonio Sant

The fundamental physics of HAWT aerodynamics in yaw is reviewed with reference to some of the latest scientific research covering both measurements and numerical modelling. The purpose of this chapter is to enable a concise overview of this important subject in rotor aerodynamics. This will provide the student, researcher or industry professional a quick reference. Detailed references are included for those who need to delve deeper into the subject. The chapter is also restricted to the aerodynamics of single rotors and their wake characteristics. Far wake and wind turbine to turbine effects experienced in wind farms are excluded from this review. Finally, a future outlook is provided in order to inspire further research in yawed aerodynamics.


TORQUE 2016: 6th International Conference "The Science of Making Torque from Wind" | 2016

The influence of a cubic building on a roof mounted wind turbine

Daniel Micallef; Tonio Sant; Carlos Simao Ferreira

The performance of a wind turbine located above a cubic building is not well understood. This issue is of fundamental importance for the design of small scale wind turbines. One variable which is of particular importance in this respect is the turbine height above roof level. In this work, the power performance of a small wind turbine is assessed as a function of the height above the roof of a generic cubic building. A 3D Computational Fluid Dynamics model of a 10m x 10m x 10m building is used with the turbine modelled as an actuator disc. Results have shown an improvement in the average power coefficient even in cases where the rotor is partially located within the roof separation zone. This goes against current notions of small wind turbine power production. This study can be of particular importance to guide the turbine installation height on building roof tops.


Journal of Renewable and Sustainable Energy | 2016

Evaluation of the lifting line vortex model approximation for estimating the local blade flow fields in horizontal-axis wind turbines

Tonio Sant; V. del Campo; Daniel Micallef; Carlos Simao Ferreira

Lifting line vortex models have been widely used to predict flow fields around wind turbine rotors. Such models are known to be deficient in modelling flow fields close to the blades due to the assumption that blade vorticity is concentrated on a line and consequently the influences of blade geometry are not well captured. The present study thoroughly assessed the errors arising from this approximation by prescribing the bound circulation as a boundary condition on the flow using a lifting line free-wake vortex approach. The bound circulation prescribed to free-wake vortex model was calculated from two independent sources using (1) experimental results from SPIV and (2) data generated from a 3D panel free-wake vortex approach, where the blade geometry is fully modelled. The axial and tangential flow fields around the blades from the lifting line vortex model were then compared with those directly produced by SPIV and the 3D panel model. The comparison was carried out for different radial locations across ...


Journal of Physics: Conference Series 555 (2014) 012002 | 2014

Effects of geometry and tip speed ratio on the HAWT blade's root flow

B. Akay; Daniel Micallef; Carlos Simao Ferreira; Gerard van Bussel

In this study, the effect of the parameters playing a role in the root flow behavior of HAWT are only partly understood. To better reveal the root flow properties, this study presents the progression of HAWT blade root flow at two different blade geometries and at two different tip speed ratios. The effects of the geometry and the tip speed ratio on the root flow behavior and on the evolution of the root flow features are investigated. This study aims to answer the following questions: (i) What are the effects of the blade geometry and tip speed ratio on the root flow behavior? (ii) How are the blade wake and the root vortex evolution affected by the change of these parameters? The analysis of the velocity fields shows that the radial flow behavior changes with different blade geometries but a remarkable difference in the radial flow behavior is not observed with the change of tip speed ratio. The formation of the wake is different at three test cases because of different loading that the blades are encountered. From the circulation distribution along the blades, while a strong root vortex can be observed in Blade 1, the bound vorticity along Blade 2 builds up gradually when moving outboard, and do not show a trace of a strong root vortex.


ASME 2013 International Mechanical Engineering Congress and Exposition | 2013

Simplified thermo-elastoplastic numerical modelling techniques applied to friction stir welding of mild steel

Daniel Micallef; Duncan Camilleri; Pierluigi Mollicone

Friction stir welding is a relatively new advanced joining technique that requires minimal power input, ultimately leading to less inherent residual stresses and distortion. The process involves a spinning tool which first plunges into the surface of the, to be welded assembly and then traverses along the joint. Frictional heat is generated, softening the material at temperatures significantly below the melting temperature of the parent material. As the tool traverses along the joint at a predetermined speed, the assembly is joined by means of a plastic straining process. This advanced welding technology has been validated for various aluminium alloys but it is only recently, due to advances in tool technology, that the possibility of joining mild steel using friction stir welding has become a viable option. This study looks into friction stir welding of mild steel and develops simplified numerical methods for the prediction of thermal gradients, residual stresses and deformation. In principle the process modelling requires a multi-disciplinary approach involving coupled thermo-fluid, microstructural-structural modelling process. Much of the latest thermo-mechanical studies of friction stir welding rely on a number of over simplifications particularly related to the heat flux distribution across the tool shoulder, and also on the backing plate boundary conditions. The objective of this paper is to scrutinise the effects of modelling in more detail and establish the most important factors leading to accurate yet computationally efficient prediction of thermal gradients and inherent residual stresses. The results show that both the heat input and heat loss modelling, due to heat dissipation to the surroundings, are crucial for the determination of the final inherent welding residual stresses. The heat generated is modelled through a predefined linear heat flux variation across the tool shoulder. However if a more precise and localized residual stress information is sought, a full thermo-fluid-structural analysis is required. This is time consuming and probably does not give significant information on manufacturing optimization. On the other hand, simplified global solutions offer the possibility to optimise friction stir welding parameters and boundary conditions during the preliminary stages of the development of the fabrication procedures, at relatively minimal time and processing power. This work is financed under the European Commission in Call FP7-SST-2012-RTD-1 High Integrity Low Distortion Assembly (HILDA) project.Copyright

Collaboration


Dive into the Daniel Micallef's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Simao Ferreira

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

C.J. Simao Ferreira

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Akay

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerard van Bussel

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniele Ragni

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

G.J.W. van Bussel

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge