Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel N. Slatkin is active.

Publication


Featured researches published by Daniel N. Slatkin.


Physics in Medicine and Biology | 2004

The use of gold nanoparticles to enhance radiotherapy in mice

James F. Hainfeld; Daniel N. Slatkin; Henry M. Smilowitz

Mice bearing subcutaneous EMT-6 mammary carcinomas received a single intravenous injection of 1.9 nm diameter gold particles (up to 2.7 g Au/kg body weight), which elevated concentrations of gold to 7 mg Au/g in tumours. Tumour-to-normal-tissue gold concentration ratios remained approximately 8:1 during several minutes of 250 kVp x-ray therapy. One-year survival was 86% versus 20% with x-rays alone and 0% with gold alone. The increase in tumours safely ablated was dependent on the amount of gold injected. The gold nanoparticles were apparently non-toxic to mice and were largely cleared from the body through the kidneys. This novel use of small gold nanoparticles permitted achievement of the high metal content in tumours necessary for significant high-Z radioenhancement.


Journal of Pharmacy and Pharmacology | 2008

Radiotherapy enhancement with gold nanoparticles.

James F. Hainfeld; F. Avraham Dilmanian; Daniel N. Slatkin; Henry M. Smilowitz

Gold is an excellent absorber of X‐rays. If tumours could be loaded with gold, this would lead to a higher dose to the cancerous tissue compared with the dose received by normal tissue during a radiotherapy treatment. Calculations indicate that this dose enhancement can be significant, even 200% or greater. In this paper, the physical and biological parameters affecting this enhancement are discussed. Gold nanoparticles have shown therapeutic efficacy in animal trials and these results are reviewed. Some 86% long‐term (>1 year) cures of EMT‐6 mouse mammary subcutaneous tumours was achieved with an intravenous injection of gold nanoparticles before irradiation with 250‐kVp photons, whereas only 20% were cured with radiation alone. The clinical potential of this approach is also discussed.


Physics in Medicine and Biology | 2010

Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma

James F. Hainfeld; F. Avraham Dilmanian; Zhong Zhong; Daniel N. Slatkin; John Kalef-Ezra; Henry M. Smilowitz

The purpose of this study is to test the hypothesis that gold nanoparticle (AuNP, nanogold)-enhanced radiation therapy (nanogold radiation therapy, NRT) is efficacious when treating the radiation resistant and highly aggressive mouse head and neck squamous cell carcinoma model, SCCVII, and to identify parameters influencing the efficacy of NRT. Subcutaneous (sc) SCCVII leg tumors in mice were irradiated with x-rays at the Brookhaven National Laboratory (BNL) National Synchrotron Light Source (NSLS) with and without prior intravenous (iv) administration of AuNPs. Variables studied included radiation dose, beam energy, temporal fractionation and hyperthermia. AuNP-mediated NRT was shown to be effective for the sc SCCVII model. AuNPs were more effective at 42 Gy than at 30 Gy (both at 68 keV median beam energy) compared to controls without gold. Similarly, at 157 keV median beam energy, 50.6 Gy NRT was more effective than 44 Gy NRT. At the same radiation dose ( approximately 42 Gy), 68 keV was more effective than 157 keV. Hyperthermia and radiation therapy (RT) were synergistic and AuNPs enhanced this synergy, thereby further reducing TCD50 s (tumor control dose 50%) and increasing long-term survivals. It is concluded that gold nanoparticles enhance the radiation therapy of a radioresistant mouse squamous cell carcinoma. The data show that radiation dose, energy and hyperthermia influence efficacy and better define the potential utility of gold nanoparticles for cancer x-ray therapy.


International Journal of Cancer | 1998

Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays

Jean A. Laissue; Gabrielle Geiser; P. Spanne; F. Avraham Dilmanian; Jan-Olaf Gebbers; Marianne Geiser; Xiaoye Wu; Michael S. Makar; Peggy L. Micca; Marta M. Nawrocky; Darrel D. Joel; Daniel N. Slatkin

Adult‐rat‐brain tissues display an unusually high resistance to necrosis when serially irradiated with parallel, thin slices of a microplanar (i.e., microscopically thin and macroscopically broad) beam of synchrotron‐wiggler‐generated, approx. 35–120 keV (median approx. 50 keV) Gd‐filtered X rays at skin‐entrance absorbed doses of 312 to 5000 Gy per slice. Such microplanar beams were used to irradiate young adult rats bearing right frontocerebral 9L gliosarcomas (approx. 4 mm diameter), through a volume of tissue containing the tumor and contiguous brain tissue, either in a single array or in 2 orthogonally crossed arrays of tissue slices. Each array included 101 parallel microplanar slices, 100 μm center‐to‐center distance, each slice being approx. 25 μm wide and 12 mm high, with skin‐entrance absorbed doses of 312.5 Gy or 625 Gy per slice. Compared with unirradiated controls with a median survival time of 20 days after tumor initiation, the median survival time was extended in irradiated rats by 139 days (625 Gy, crossed arrays), 96 days (312.Gy, crossed arrays) or 24 days (625 Gy, single array). The tumors disappeared in 22 of the 36 irradiated rats, 4/ 11 even after unidirectional microbeam irradiation. The extent and severity of radiation damage to the normal brain in rats with or without tumor was graded histopathologically. Correlation of those grades with radiation doses shows that loss of tissue structure was confined to beam‐crossing regions and that only minor damage was done to zones of the brain irradiated unidirectionally. Int. J. Cancer 78:654–660, 1998.


Medical Physics | 1992

Microbeam Radiation Therapy

Daniel N. Slatkin; P. Spanne; F. A. Dilmanian; Michael Sandborg

It is proposed to carry out radiotherapy and radiosurgery for brain lesions by crossfiring an array of parallel, closely spaced microbeams of synchrotron-generated x rays several times through an i ...


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Gold nanoparticle imaging and radiotherapy of brain tumors in mice

James F. Hainfeld; Henry M. Smilowitz; Michael J O’Connor; Farrokh Avraham Dilmanian; Daniel N. Slatkin

AIM To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. MATERIALS & METHODS Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. RESULTS Gold uptake gave a 19:1 tumor to normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. CONCLUSION Intravenously injected gold nanoparticles cross the blood-tumor barrier, but are largely blocked by the normal blood-brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers.


Neurosurgery | 1999

Boron Neutron Capture Therapy for Glioblastoma Multiforme: Interim Results from the Phase I/II Dose-Escalation Studies

A. D. Chanana; Jacek Capala; Manjeet Chadha; Jeffrey A. Coderre; A. Z. Diaz; Eric H. Elowitz; Junichi Iwai; Darrel D. Joel; Hunguan B. Liu; Ruimei Ma; Noreen Pendzick; Nancy S. Peress; Magdy Shady; Daniel N. Slatkin; George W. Tyson; Lucian Wielopolski

OBJECTIVE: The primary objective of these Phase I/II dose-escalation studies is to evaluate the safety of boronophenylalanine (BPA)-fructose-mediated boron neutron capture therapy (BNCT) for patients with glioblastoma multiforme (GBM). A secondary purpose is to assess the palliation of GBM by BNCT, if possible. METHODS: Thirty-eight patients with GBM have been treated. Subtotal or gross total resection of GBM was performed for 38 patients (median age, 56 yr) before BNCT. BPA-fructose (250 or 290 mg BPA/kg body weight) was infused intravenously, in 2 hours, approximately 3 to 5 weeks after surgery. Neutron irradiation was begun between 34 and 82 minutes after the end of the BPA infusion and lasted 38 to 65 minutes. RESULTS: Toxicity related to BPA-fructose was not observed. The maximal radiation dose to normal brain varied from 8.9 to 14.8 Gy-Eq. The volume-weighted average radiation dose to normal brain tissues ranged from 1.9 to 6.0 Gy-Eq. No BNCT-related Grade 3 or 4 toxicity was observed, although milder toxicities were seen. Twenty-five of 37 assessable patients are dead, all as a result of progressive GBM. No radiation-induced damage to normal brain tissue was observed in postmortem examinations of seven brains. The minimal tumor volume doses ranged from 18 to 55 Gy-Eq. The median time to tumor progression and the median survival time from diagnosis (from Kaplan-Meier curves) were 31.6 weeks and 13.0 months, respectively. CONCLUSION: The BNCT procedure used has been safe for all patients treated to date. Our limited clinical evaluation suggests that the palliation offered by a single session of BNCT is comparable to that provided by fractionated photon therapy. Additional studies with further escalation of radiation doses are in progress.


British Journal of Radiology | 2011

Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions

James F. Hainfeld; M J O’Connor; F A Dilmanian; Daniel N. Slatkin; Douglas J. Adams; Henry M. Smilowitz

OBJECTIVES Gold nanoparticles are of interest as potential in vivo diagnostic and therapeutic agents, as X-ray contrast agents, drug delivery vehicles and radiation enhancers. The aim of this study was to quantitatively determine their targeting and microlocalisation in mouse tumour models after intravenous injection by using micro-CT. METHODS Gold nanoparticles (15 nm) were coated with polyethylene glycol and covalently coupled to anti-Her2 antibodies (Herceptin). In vitro, conjugates incubated with Her2+ (BT-474) and Her2- (MCF7) human breast cancer cells showed specific targeted binding with a Her2+ to Her2- gold ratio of 39.4±2.7:1. Nude mice, simultaneously bearing subcutaneous Her2+ and Her2- human breast tumours in opposite thighs were prepared. Gold nanoparticles alone, conjugated to Herceptin or to a non-specific antibody were compared. After intravenous injection of the gold nanoparticles, gold concentrations were determined by atomic absorption spectroscopy. Microlocalisation of gold was carried out by calibrated micro-CT, giving both the radiodensities and gold concentrations in tumour and non-tumour tissue. RESULTS All gold nanoparticle constructs showed accumulation, predominantly at tumour peripheries. However, the Herceptin-gold nanoparticles showed the best specific uptake in their periphery (15.8±1.7% injected dose per gram), 1.6-fold higher than Her2- tumours and 22-fold higher than surrounding muscle. Imaging readily enabled detection of small, 1.5 mm-thick tumours. CONCLUSION In this pre-clinical study, antibody-targeted 15 nm gold nanoparticles showed preferential uptake in cognate tumours, but even untargeted gold nanoparticles enhanced the visibility of tumour peripheries and enabled detection of millimetre-sized tumours. Micro-CT enabled quantification within various regions of a tumour.


Radiation Research | 1998

Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity.

Jeffrey A. Coderre; A. D. Chanana; Darrel D. Joel; Eric H. Elowitz; Peggy L. Micca; Marta M. Nawrocky; Manjeet Chadha; Jan-Olaf Gebbers; Magdy Shady; Nancy S. Peress; Daniel N. Slatkin

Boron-10 (10B) concentrations were measured in 107 surgical samples from 15 patients with glioblastoma multiforme who were infused with 95 atom% 10B-enriched p-boronophenylalanine (BPA) intravenously for 2 h just prior to surgery at doses ranging from 98 to 290 mg BPA/kg body weight. The blood 10B concentration reached a maximum at the end of the infusion (ranging from 9.3 to 26.0 microg 10B/g) and was proportional to the amount of BPA infused. The boron concentrations in excised tumor samples ranged from 2.7 to 41.3 microg 10B/g over the range of administered BPA doses and varied considerably among multiple samples from individual patients and among patients at the same BPA dose. A morphometric index of the density of viable-appearing tumor cells in histological sections obtained from samples adjacent to, and macroscopically similar to, the tumor samples used for boron analysis correlated linearly with the boron concentrations. From that correlation it is estimated that 10B concentrations in glioblastoma tumor cells were over four times greater than concurrent blood 10B concentrations. Thus, in the dose range of 98 to 290 mg BPA/kg, the accumulation of boron in tumor cells is a linear function of BPA dose and the variations observed in boron concentrations of tumor specimens obtained surgically are largely due to differences in the proportion of nontumor tissue (i.e. necrotic tissue, normal brain) present in the samples submitted for boron analysis. The tumor:blood 10B concentration ratio derived from this analysis provides a rationale for estimating the fraction of the radiation dose to viable tumor cells resulting from the boron neutron capture reaction based on measured boron concentrations in the blood at the time of BNCT without the need for analysis of tumor samples from individual patients.


International Symposium on Optical Science and Technology | 2001

Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology

Jean A. Laissue; Hans Blattmann; Marco Di Michiel; Daniel N. Slatkin; Nadia Lyubimova; Raphael Guzman; Werner Zimmermann; Stephan Birrer; Tim Bley; Patrick Kircher; Regina Stettler; Rosmarie Fatzer; A. Jaggy; Henry M. Smilowitz; Elke Brauer; Alberto Bravin; Géraldine Le Duc; Christian Nemoz; M. Renier; W Thomlinson; Jiri Stepanek; Hans-Peter Wagner

The cerebellum of the weanling piglet (Yorkshire) was used as a surrogate for the radiosensitive human infant cerebellum in a Swiss-led program of experimental microbeam radiation therapy (MRT) at the ESRF. Five weanlings in a 47 day old litter of seven, and eight weanlings in a 40 day old litter of eleven were irradiated in November, 1999 and June, 2000, respectively. A 1.5 cm-wide x 1.5 xm-high array of equally space approximately equals 20-30 micrometers wide, upright microbeams spaced at 210 micrometers intervals was propagated horizontally, left to right, through the cerebella of the prone, anesthetized piglets. Skin-entrance intra-microbeam peak adsorbed doses were uniform, either 150, 300, 425, or 600 gray (Gy). Peak and inter-microbeam (valley) absorbed doses in the cerebellum were computed with the PSI version of the Monte Carlo code GEANT and benchmarked using Gafchromic and radiochromic film microdosimetry. For approximately equals 66 weeks [first litter; until euthanasia], or approximately equals 57 weeks [second litter; until July 30, 2001] after irradiation, the littermates were developmentally, behaviorally, neurologically and radiologically normal as observed and tested by experienced farmers and veterinary scientists unaware of which piglets were irradiated or sham-irradiated. Morever, MRT implemented at the ESRF with a similar array of microbeams and a uniform skin-entrance peak dose of 625 Gy, followed by immunoprophylaxis, was shown to be palliative or curative in young adult rats bearing intracerebral gliosarcomas. These observations give further credence to MRTs potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous.

Collaboration


Dive into the Daniel N. Slatkin's collaboration.

Top Co-Authors

Avatar

Peggy L. Micca

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Coderre

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Darrel D. Joel

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Henry M. Smilowitz

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta M. Nawrocky

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michiko Miura

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. G. Fairchild

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alberto Bravin

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

A. D. Chanana

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge