Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Nowak is active.

Publication


Featured researches published by Daniel Nowak.


Nature | 2011

Frequent pathway mutations of splicing machinery in myelodysplasia.

Kenichi Yoshida; Masashi Sanada; Yuichi Shiraishi; Daniel Nowak; Yasunobu Nagata; Ryo Yamamoto; Yusuke Sato; Aiko Sato-Otsubo; Ayana Kon; Masao Nagasaki; George Chalkidis; Yutaka Suzuki; Masashi Shiosaka; Ryoichiro Kawahata; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Ken Ishiyama; Hiraku Mori; Florian Nolte; Wolf-Karsten Hofmann; Shuichi Miyawaki; Sumio Sugano; Claudia Haferlach; H. Phillip Koeffler; Lee-Yung Shih; Torsten Haferlach; Shigeru Chiba; Hiromitsu Nakauchi

Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (∼45 to ∼85%) in, and highly specific to, myeloid neoplasms showing features of myelodysplasia. Conspicuously, most of the mutations, which occurred in a mutually exclusive manner, affected genes involved in the 3′-splice site recognition during pre-mRNA processing, inducing abnormal RNA splicing and compromised haematopoiesis. Our results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.


The New England Journal of Medicine | 2009

Long-Term Control of HIV by CCR5 Delta32/Delta32 Stem-Cell Transplantation

Gero Hütter; Daniel Nowak; Maximilian Mossner; Susanne Ganepola; Kristina Allers; Thomas Schneider; Jörg Hofmann; Claudia Kücherer; Olga Blau; Igor Wolfgang Blau; Wolf K. Hofmann; Eckhard Thiel

Infection with the human immunodeficiency virus type 1 (HIV-1) requires the presence of a CD4 receptor and a chemokine receptor, principally chemokine receptor 5 (CCR5). Homozygosity for a 32-bp deletion in the CCR5 allele provides resistance against HIV-1 acquisition. We transplanted stem cells from a donor who was homozygous for CCR5 delta32 in a patient with acute myeloid leukemia and HIV-1 infection. The patient remained without viral rebound 20 months after transplantation and discontinuation of antiretroviral therapy. This outcome demonstrates the critical role CCR5 plays in maintaining HIV-1 infection.


Blood | 2009

Differentiation therapy of leukemia: 3 decades of development

Daniel Nowak; Daphne Stewart; H. Phillip Koeffler

A characteristic feature of leukemia cells is a blockade of differentiation at a distinct stage in cellular maturation. In the 1970s and 1980s, studies demonstrating the capabilities of certain chemicals to induce differentiation of hematopoietic cell lines fostered the concept of treating leukemia by forcing malignant cells to undergo terminal differentiation instead of killing them through cytotoxicity. The first promising reports on this notion prompted a review article on this subject by us 25 years ago. In this review, we revisit this interesting field of study and report the progress achieved in the course of nearly 3 decades. The best proof of principle for differentiation therapy has been the treatment of acute promyelocytic leukemia with all-trans retinoic acid. Attempts to emulate this success with other nuclear hormone ligands such as vitamin D compounds and PPARgamma agonists or different classes of substances such as hematopoietic cytokines or compounds affecting the epigenetic landscape have not been successful on a broad scale. However, a multitude of studies demonstrating partial progress and improvements and, finally, the new powerful possibilities of forward and reverse engineering of differentiation pathways by manipulation of transcription factors support the continued enthusiasm for differentiation therapy of leukemia in the future.


Nature Genetics | 2013

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms

Ayana Kon; Lee-Yung Shih; Masashi Minamino; Masashi Sanada; Yuichi Shiraishi; Yasunobu Nagata; Kenichi Yoshida; Yusuke Okuno; Masashige Bando; Ryuichiro Nakato; Shumpei Ishikawa; Aiko Sato-Otsubo; Genta Nagae; Aiko Nishimoto; Claudia Haferlach; Daniel Nowak; Yusuke Sato; Tamara Alpermann; Masao Nagasaki; Teppei Shimamura; Hiroko Tanaka; Kenichi Chiba; Ryo Yamamoto; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Tsuyoshi Nakamaki; Ken Ishiyama; Florian Nolte

Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.


Cell Stem Cell | 2014

Myelodysplastic Cells in Patients Reprogram Mesenchymal Stromal Cells to Establish a Transplantable Stem Cell Niche Disease Unit

Hind Medyouf; Maximilian Mossner; Johann Christoph Jann; Florian Nolte; Simon Raffel; Carl Herrmann; Amelie Lier; Christian Eisen; Verena Nowak; Bettina Zens; Katja Müdder; Corinna Klein; Julia Obländer; Stephanie Fey; Jovita Vogler; Alice Fabarius; Eva Riedl; Henning Roehl; Alexander Kohlmann; Marita Staller; Claudia Haferlach; Nadine Müller; Thilo John; Uwe Platzbecker; Georgia Metzgeroth; Wolf K. Hofmann; Andreas Trumpp; Daniel Nowak

Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.


Leukemia | 2012

Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia.

Eva Lengfelder; Wolf-Karsten Hofmann; Daniel Nowak

Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). This review provides insights into the mode of action and the pharmacological properties of ATO, and summarizes the most relevant results of more than 20 treatment studies in relapsed or newly diagnosed APL published between 1997 and 2011. ATO acts by targeting multiple pathways in APL leading to apoptosis and myeloid differentiation. It induces complete remission without myelosuppression and causes only few adverse effects. In relapsed APL, ATO-based salvage therapy has been able to induce long-lasting remissions and possible cure in 50–81% of patients. In newly diagnosed APL, two main strategies are currently pursued. ATO is either included into induction therapy with the aim to minimize or eliminate chemotherapy, or it is incorporated as an additive into established first-line concepts with all-trans-retinoic acid and chemotherapy to reinforce their anti-leukemic efficacy. Recent results suggest a high efficacy of ATO in both concepts. In conclusion, experimental research and clinical studies have made contributions toward a better understanding of the molecular mechanisms induced by ATO in APL cells and have established this historic substance as an important candidate for the further improvement of APL therapy.


Nature Cell Biology | 2017

Human haematopoietic stem cell lineage commitment is a continuous process

Lars Velten; Simon Haas; Simon Raffel; Sandra Blaszkiewicz; Saiful Islam; Bianca P. Hennig; Christoph Hirche; Christoph Lutz; Eike C. Buss; Daniel Nowak; Tobias Boch; Wolf K. Hofmann; Anthony D. Ho; Wolfgang Huber; Andreas Trumpp; Marieke Essers; Lars M. Steinmetz

Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a ‘continuum of low-primed undifferentiated haematopoietic stem and progenitor cells’ (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies.


Blood | 2010

Prevalence and prognostic impact of allelic imbalances associated with leukemic transformation of Philadelphia chromosome–negative myeloproliferative neoplasms

Nils H. Thoennissen; Utz Krug; Dhong Hyun Lee; Norihiko Kawamata; Gabriela B. Iwanski; Terra L. Lasho; Tamara Weiss; Daniel Nowak; Maya Koren-Michowitz; Motohiro Kato; Masashi Sanada; Lee Yung Shih; Arnon Nagler; Sophie Raynaud; Carsten Müller-Tidow; Ruben A. Mesa; Torsten Haferlach; D. Gary Gilliland; Ayalew Tefferi; Seishi Ogawa; H. Phillip Koeffler

Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia, and primary myelofibrosis show an inherent tendency for transformation into leukemia (MPN-blast phase), which is hypothesized to be accompanied by acquisition of additional genomic lesions. We, therefore, examined chromosomal abnormalities by high-resolution single nucleotide polymorphism (SNP) array in 88 MPN patients, as well as 71 cases with MPN-blast phase, and correlated these findings with their clinical parameters. Frequent genomic alterations were found in MPN after leukemic transformation with up to 3-fold more genomic changes per sample compared with samples in chronic phase (P < .001). We identified commonly altered regions involved in disease progression including not only established targets (ETV6, TP53, and RUNX1) but also new candidate genes on 7q, 16q, 19p, and 21q. Moreover, trisomy 8 or amplification of 8q24 (MYC) was almost exclusively detected in JAK2V617F(-) cases with MPN-blast phase. Remarkably, copy number-neutral loss of heterozygosity (CNN-LOH) on either 7q or 9p including homozygous JAK2V617F was related to decreased survival after leukemic transformation (P = .01 and P = .016, respectively). Our high-density SNP-array analysis of MPN genomes in the chronic compared with leukemic stage identified novel target genes and provided prognostic insights associated with the evolution to leukemia.


Nature Medicine | 2013

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint

Srividya Swaminathan; Chuanxin Huang; Huimin Geng; Zhengshan Chen; Richard C. Harvey; Huining Kang; Carina Ng; Björn Titz; Christian Hurtz; Mohammed Firas Sadiyah; Daniel Nowak; Gabriela B. Thoennissen; Vikki Rand; Thomas G. Graeber; H. Phillip Koeffler; William L. Carroll; Cheryl L. Willman; Andrew G. Hall; Kazuhiko Igarashi; Ari Melnick; Markus Müschen

The B cell–specific transcription factor BACH2 is required for affinity maturation of B cells. Here we show that Bach2-mediated activation of p53 is required for stringent elimination of pre-B cells that failed to productively rearrange immunoglobulin VH-DJH gene segments. After productive VH-DJH gene rearrangement, pre-B cell receptor signaling ends BACH2-mediated negative selection through B cell lymphoma 6 (BCL6)-mediated repression of p53. In patients with pre-B acute lymphoblastic leukemia, the BACH2-mediated checkpoint control is compromised by deletions, rare somatic mutations and loss of its upstream activator, PAX5. Low levels of BACH2 expression in these patients represent a strong independent predictor of poor clinical outcome. In this study, we demonstrate that Bach2+/+ pre-B cells resist leukemic transformation by Myc through Bach2-dependent upregulation of p53 and do not initiate fatal leukemia in transplant-recipient mice. Chromatin immunoprecipitation sequencing and gene expression analyses carried out by us revealed that BACH2 competes with BCL6 for promoter binding and reverses BCL6-mediated repression of p53 and other cell cycle checkpoint–control genes. These findings identify BACH2 as a crucial mediator of negative selection at the pre-B cell receptor checkpoint and a safeguard against leukemogenesis.


Haematologica | 2010

Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia

Ryoko Okamoto; Seishi Ogawa; Daniel Nowak; Norihiko Kawamata; Tadayuki Akagi; Motohiro Kato; Masashi Sanada; Tamara Weiss; Claudia Haferlach; Martin Dugas; Christian Ruckert; Torsten Haferlach; H. Phillip Koeffler

Background Differences in survival have been reported between pediatric and adult acute lymphoblastic leukemia. The inferior prognosis in adult acute lymphoblastic leukemia is not fully understood but could be attributed, in part, to differences in genomic alterations found in adult as compared to in pediatric acute lymphoblastic leukemia. Design and Methods We compared two different sets of high-density single nucleotide polymorphism array genotyping data from 75 new diagnostic adult and 399 previously published diagnostic pediatric acute lymphoblastic leukemia samples. The patients’ samples were randomly acquired from among Caucasian and Asian populations and hybridized to either Affymetrix 50K or 250K single nucleotide polymorphism arrays. The array data were investigated with Copy Number Analysis for GeneChips (CNAG) software for allele-specific copy number analysis. Results The high density single nucleotide polymorphism array analysis of 75 samples of adult acute lymphoblastic leukemia led to the identification of numerous cryptic and submicroscopic genomic lesions with a mean of 7.6 genomic alterations per sample. The patterns and frequencies of lesions detected in the adult samples largely reproduced known genomic hallmarks detected in previous single nucleotide polymorphism-array studies of pediatric acute lymphoblastic leukemia, such as common deletions of 3p14.2 (FHIT), 5q33.3 (EBF), 6q, 9p21.3 (CDKN2A/B), 9p13.2 (PAX5), 13q14.2 (RB1) and 17q11.2 (NF1). Some differences between adult and pediatric acute lymphoblastic leukemia were identified when the pediatric data set was partitioned into hyperdiploid and non-hyperdiploid cases and then compared to the nearly exclusively non-hyperdiploid adult samples. In this analysis, adult samples had a higher rate of deletions of chromosome 17p (TP53) and duplication of 17q. Conclusions Our analysis of adult acute lymphoblastic leukemia cases led to the identification of new potential target lesions relevant for the pathogenesis of acute lymphoblastic leukemia. However, no unequivocal pattern of submicroscopic genomic alterations was found to separate adult acute lymphoblastic leukemia from pediatric acute lymphoblastic leukemia. Therefore, apart from different therapy regimen, differences of prognosis between adult and pediatric acute lymphoblastic leukemia are probably based on genetic subgroups according to cytogenetically detectable lesions but not focal genomic copy number microlesions.

Collaboration


Dive into the Daniel Nowak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge