Daniel Ortuño-Sahagún
University of Guadalajara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Ortuño-Sahagún.
Journal of Pineal Research | 2009
Marta Tajes; Javier Gutierrez-Cuesta; Daniel Ortuño-Sahagún; Antoni Camins; Mercè Pallàs
Abstract: Sirtuin 1 is a member of the sirtuin family of protein deacetylases, which have attracted considerable attention as mediators of lifespan extension in several model organisms. Induction of sirtuin 1 expression also attenuates neuronal degeneration and death in animal models of Alzheimer’s disease and Huntington’s disease. In this study, an in vitro model of neuronal aging was used to test in several ways whether melatonin acts as a sirtuin 1 inducer and if this effect could be neuroprotective. It is shown that melatonin is able to increase the level of this deacetylase in young primary neurons, as well as in aged neurons. We also observed an increase in the deacetylation of several substrates of sirtuin 1, such as p53, PGC‐1α, FoxO1, ADAM10 and NFκB. In addition, there was a reduction in its nuclear translocation and, subsequently, an improvement in transcriptional activity. Sirtinol, a sirtuin 1 inhibitor, was used to correlate these effects with sirtuin. It is shown that sirtinol reduces sirtuin 1 expression and impairs the beneficial action of melatonin on cell viability and apoptosis prevention. Moreover, some of the sirtuin 1 substrates studied also reversed the melatonin effect when sirtinol is added to the cells, mainly p53. Globally, these results add weight to the findings of previous reports, indicating a new role for melatonin in improving cell function gated to an increased neuroprotective role for the sirtuin 1 pathway.
Clinical & Developmental Immunology | 2015
Rodrigo Arreola; Saray Quintero-Fabián; Rocío Ivette López-Roa; Enrique Octavio Flores-Gutiérrez; Juan Pablo Reyes-Grajeda; Lucrecia Carrera-Quintanar; Daniel Ortuño-Sahagún
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
Oxidative Medicine and Cellular Longevity | 2013
Marisol Godínez-Rubí; Argelia E. Rojas-Mayorquín; Daniel Ortuño-Sahagún
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Mediators of Inflammation | 2013
Saray Quintero-Fabián; Daniel Ortuño-Sahagún; Manuel Vázquez-Carrera; Rocío Ivette López-Roa
Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.
Oxidative Medicine and Cellular Longevity | 2014
Daniel Ortuño-Sahagún; Mercè Pallàs; Argelia E. Rojas-Mayorquín
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individuals Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Experimental Gerontology | 2010
Marta Tajes; Javier Gutierrez-Cuesta; Jaume Folch; Daniel Ortuño-Sahagún; E. Verdaguer; Andrés Jiménez; Felix Junyent; A. Lau; A. Camins; Mercè Pallàs
Dietary interventions have been proposed as a way to increase lifespan and improve health. The senescence-accelerated prone 8 (SAMP8) mice have a shorter lifespan and show alterations in the central nervous system. Moreover, this mouse strain shows decreased sirtuin 1 protein expression and elevated expression of the acetylated targets NFkappaB and FoxO1, which are implicated in transcriptional control of key genes in cell proliferation and cell survival, in reference to control strain, SAMR1. After eight weeks of intermittent fasting, sirtuin 1 protein expression was recovered in SAMP8. This recovery was accompanied by a reduction in the two acetylated targets. Furthermore, SAMP8 showed a lower protein expression of BDNF and HSP70 while intermittent fasting re-established normal values. The activation of JNK and FoxO1 was also reduced in SAMP8 mice subjected to an IF regimen, compared with control SAMP8. Our findings provide new insights into the participation of sirtuin 1 in ageing and point to a potential novel application of this enzyme to prevent frailty due to ageing processes in the brain.
Molecular and Cellular Biology | 2008
Benjamin Grau; Cristina Popescu; Laura Torroja; Daniel Ortuño-Sahagún; Imre Boros; Alberto Ferrús
ABSTRACT The Drosophila melanogaster gene diskette (also known as dik or dAda3) encodes a protein 29% identical to human ADA3, a subunit of GCN5-containing histone acetyltransferase (HAT) complexes. The fly dADA3 is a major contributor to oogenesis, and it is also required for somatic cell viability. dADA3 localizes to chromosomes, and it is significantly reduced in dGcn5 and dAda2a, but not in dAda2b, mutant backgrounds. In dAda3 mutants, acetylation at histone H3 K9 and K14, but not K18, and at histone H4 K12, but not K5, K8, and K16, is significantly reduced. Also, phosphorylation at H3 S10 is reduced in dAda3 and dGcn5 mutants. Variegation for white (wm4) and scute (Hwv) genes, caused by rearrangements of X chromosome heterochromatin, is modified in a dAda3+ gene-dosage-dependent manner. The effect is not observed with rearrangements involving Y heterochromatin (bwD), euchromatin (Scutoid), or transvection effects on chromosomal pairing (white and zeste interaction). Activity of scute gene enhancers, targets for Iroquoi transcription factors, is abolished in dAda3 mutants. Also, Iroquoi-associated phenotypes are sensitive to dAda3+ gene dosage. We conclude that dADA3 plays a role in HAT complexes which acetylate H3 and H4 at specific residues. In turn, this acetylation results in chromatin structure effects of certain rearrangements and transcription of specific genes.
Neurochemistry International | 1997
Daniel Ortuño-Sahagún; Carlos Beas-Zarate; Gricelda Adame-Gonzalez; Alfredo Feria-Velasco
Glutamate, as a monosodium salt (MSG) has neurotoxic effects on some brain regions when systemically given to young rats. Few studies have been conducted to establish the mechanisms involved in studying neurotoxicity resulting in neuronal death by glutamate (Glu) and its effects as related to different brain neuropathologies under in-vivo conditions and where the cholinergic system shows vulnerability. Thus, this paper aims to evaluate the binding kinetics of quinuclynidyl benzylate (QNB) to muscarinic receptors for acetylcholine and the activity of choline acetyltransferase (CAT) in rats treated with MSG (4 mg/g on days 1, 3, 5, and 7 after birth) during the rat development stages (days 14, 21, 30, and 60) in different brain regions. The results show that perinatal treatment with MSG significantly decreases the CAT activity and increases the affinity of [3H]-QNB and the number of receptors of the brain cortex during the ages studied. The striatum showed increased CAT activity and BMAX on days 30 and 60 after birth. Affinity and the number of receptors increased in the hippocampus only between days 21 through 60 after birth. NaCl given at MSG equimolar doses only modified the CAT activity but had no effect on the [3H]-QNB binding kinetics in any of the regions studied. The results show that MSG alters cholinergic neurotransmission in the central nervous system (CNS) and induces the development of compensating events suggesting an involvement in neuronal plasticity during the development of rat CNS.
Molecular Neurobiology | 2016
Christian Griñán-Ferré; David Pérez-Cáceres; Sofía Martínez Gutiérrez-Zetina; Antoni Camins; Verónica Palomera-Ávalos; Daniel Ortuño-Sahagún; M. Teresa Rodrigo; Mercè Pallàs
The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.
Mediators of Inflammation | 2016
José de Jesús Guerrero-García; Lucrecia Carrera-Quintanar; Rocío Ivette López-Roa; Ana Laura Márquez-Aguirre; Argelia E. Rojas-Mayorquín; Daniel Ortuño-Sahagún
Multiple Sclerosis (MS) is an autoimmune disorder of the Central Nervous System that has been associated with several environmental factors, such as diet and obesity. The possible link between MS and obesity has become more interesting in recent years since the discovery of the remarkable properties of adipose tissue. Once MS is initiated, obesity can contribute to increased disease severity by negatively influencing disease progress and treatment response, but, also, obesity in early life is highly relevant as a susceptibility factor and causally related risk for late MS development. The aim of this review was to discuss recent evidence about the link between obesity, as a chronic inflammatory state, and the pathogenesis of MS as a chronic autoimmune and inflammatory disease. First, we describe the main cells involved in MS pathogenesis, both from neural tissue and from the immune system, and including a new participant, the adipocyte, focusing on their roles in MS. Second, we concentrate on the role of several adipokines that are able to participate in the mediation of the immune response in MS and on the possible cross talk between the latter. Finally, we explore recent therapy that involves the transplantation of adipocyte precursor cells for the treatment of MS.