Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Glavin is active.

Publication


Featured researches published by Daniel P. Glavin.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases

Michael P. Callahan; Karen E. Smith; H. James Cleaves; Josef Ruzicka; Jennifer C. Stern; Daniel P. Glavin; Christopher H. House; Jason P. Dworkin

All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites

Pascale Ehrenfreund; Daniel P. Glavin; Oliver Botta; George Cooper; Jeffrey L. Bada

Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that β-alanine, glycine, and γ-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from ≈600 to 2,000 parts per billion (ppb). Other α-amino acids such as alanine, α-ABA, α-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of β-alanine and glycine and the presence of racemic (D/L ≈ 1) alanine and β-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.


Science | 2008

The Miller volcanic spark discharge experiment

Adam P. Johnson; H. James Cleaves; Jason P. Dworkin; Daniel P. Glavin; Antonio Lazcano; Jeffrey L. Bada

Millers 1950s experiments used, besides the apparatus known in textbooks, one that generated a hot water mist in the spark flask, simulating a water vapor‐rich volcanic eruption. We found the original extracts of this experiment in Millers material and reanalyzed them. The volcanic apparatus produced a wider variety of amino acids than the classic one. Release of reduced gases in volcanic eruptions accompanied by lightning could have been common on the early Earth. Prebotic compounds synthesized in these environments could have locally accumulated, where they could have undergone further processing.


Science | 2015

Mars methane detection and variability at Gale crater

C. R. Webster; Paul R. Mahaffy; Sushil K. Atreya; G. J. Flesch; Michael A. Mischna; P.-Y. Meslin; Kenneth A. Farley; P. G. Conrad; Lance E. Christensen; A. A. Pavlov; Javier Martin-Torres; María-Paz Zorzano; Timothy H. McConnochie; Tobias Owen; Jennifer L. Eigenbrode; Daniel P. Glavin; Andrew Steele; C. A. Malespin; P. Douglas Archer; Brad Sutter; Patrice Coll; Caroline Freissinet; Christopher P. McKay; John E. Moores; S. P. Schwenzer; John C. Bridges; Rafael Navarro-González; Ralf Gellert; Mark T. Lemmon

Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science, this issue p. 412, p. 415; see also p. 370 Curiosity confirms the presence and variability of atmospheric methane, implying episodic production from an unknown source. [Also see Perspective by Zahnle] Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies

Daniel P. Glavin; Jason P. Dworkin

The distribution and enantiomeric composition of the 5-carbon (C5) amino acids found in CI-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/N-acetyl-l-cysteine derivatization. A large l-enantiomeric excess (ee) of the α-methyl amino acid isovaline was found in the CM meteorite Murchison (lee = 18.5 ± 2.6%) and the CI meteorite Orgueil (lee = 15.2 ± 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any CI meteorite. The l-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C5 amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no l-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for l-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other α-dialkyl amino acids found in altered CI and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earths prebiotic organic inventory with left-handed molecules before the origin of life.


Science | 2011

Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite

C. D. K. Herd; Alexandra I. Blinova; Danielle N. Simkus; Yongsong Huang; Rafael Tarozo; Conel M. Od. Alexander; Frank Gyngard; Larry R. Nittler; George D. Cody; Marilyn L. Fogel; Yoko Kebukawa; A. L. David Kilcoyne; Robert W. Hilts; Greg F. Slater; Daniel P. Glavin; Jason P. Dworkin; Michael P. Callahan; Jamie E. Elsila; Bradley T. De Gregorio; Rhonda M. Stroud

The study of organic matter in a well-preserved meteorite provides insight into processes that affected its parent asteroids. The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites’ asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.


Meteoritics & Planetary Science | 2010

The Effects of Parent Body Processes on Amino Acids in Carbonaceous Chondrites

Daniel P. Glavin; Michael P. Callahan; Jason P. Dworkin; Jamie E. Elsila

To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD ⁄ ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the c- and d-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by a-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, a-aminoisobutyric acid (a-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with l-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable l-isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment

Eric T. Parker; Henderson James Cleaves; Jason P. Dworkin; Daniel P. Glavin; Michael P. Callahan; Andrew D. Aubrey; Antonio Lazcano; Jeffrey L. Bada

Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.


Science | 2012

Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

Peter Jenniskens; Marc Fries; Q.-Z. Yin; Michael E. Zolensky; Alexander N. Krot; Scott A. Sandford; Derek W. G. Sears; Robert Beauford; Denton S. Ebel; Jon M. Friedrich; Kazuhide Nagashima; Josh Wimpenny; Akane Yamakawa; Kunihiko Nishiizumi; Yasunori Hamajima; Marc W. Caffee; Kees C. Welten; M. Laubenstein; Andrew M. Davis; Steven B. Simon; Philipp R. Heck; Edward D. Young; Issaku E. Kohl; Mark H. Thiemens; Morgan H. Nunn; Takashi Mikouchi; Kenji Hagiya; Kazumasa Ohsumi; Thomas A. Cahill; Jonathan A. Lawton

The Meteor That Fell to Earth In April 2012, a meteor was witnessed over the Sierra Nevada Mountains in California. Jenniskens et al. (p. 1583) used a combination of photographic and video images of the fireball coupled with Doppler weather radar images to facilitate the rapid recovery of meteorite fragments. A comprehensive analysis of some of these fragments shows that the Sutters Mill meteorite represents a new type of carbonaceous chondrite, a rare and primitive class of meteorites that contain clues to the origin and evolution of primitive materials in the solar system. The unexpected and complex nature of the fragments suggests that the surfaces of C-class asteroids, the presumed parent bodies of carbonaceous chondrites, are more complex than previously assumed. Analysis of this rare meteorite implies that the surfaces of C-class asteroids can be more complex than previously assumed. Doppler weather radar imaging enabled the rapid recovery of the Sutter’s Mill meteorite after a rare 4-kiloton of TNT–equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand’s parameter = 2.8 ± 0.3). Sutter’s Mill is a regolith breccia composed of CM (Mighei)–type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

Collaboration


Dive into the Daniel P. Glavin's collaboration.

Top Co-Authors

Avatar

Jason P. Dworkin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Mahaffy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Cyril Szopa

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar

Jamie E. Elsila

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Michel Cabane

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. J. Coll

Centre National D'Etudes Spatiales

View shared research outputs
Researchain Logo
Decentralizing Knowledge