Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Huttenlocher is active.

Publication


Featured researches published by Daniel P. Huttenlocher.


International Journal of Computer Vision | 2004

Efficient Graph-Based Image Segmentation

Pedro F. Felzenszwalb; Daniel P. Huttenlocher

This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 1993

Comparing images using the Hausdorff distance

Daniel P. Huttenlocher; Gregory A. Klanderman; William Rucklidge

The Hausdorff distance measures the extent to which each point of a model set lies near some point of an image set and vice versa. Thus, this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. Efficient algorithms for computing the Hausdorff distance between all possible relative positions of a binary image and a model are presented. The focus is primarily on the case in which the model is only allowed to translate with respect to the image. The techniques are extended to rigid motion. The Hausdorff distance computation differs from many other shape comparison methods in that no correspondence between the model and the image is derived. The method is quite tolerant of small position errors such as those that occur with edge detectors and other feature extraction methods. It is shown that the method extends naturally to the problem of comparing a portion of a model against an image. >


International Journal of Computer Vision | 2005

Pictorial Structures for Object Recognition

Pedro F. Felzenszwalb; Daniel P. Huttenlocher

In this paper we present a computationally efficient framework for part-based modeling and recognition of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to represent an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We address the problem of using pictorial structure models to find instances of an object in an image as well as the problem of learning an object model from training examples, presenting efficient algorithms in both cases. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.


knowledge discovery and data mining | 2006

Group formation in large social networks: membership, growth, and evolution

Lars Backstrom; Daniel P. Huttenlocher; Jon M. Kleinberg; Xiangyang Lan

The processes by which communities come together, attract new members, and develop over time is a central research issue in the social sciences - political movements, professional organizations, and religious denominations all provide fundamental examples of such communities. In the digital domain, on-line groups are becoming increasingly prominent due to the growth of community and social networking sites such as MySpace and LiveJournal. However, the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities has left most basic questions about the evolution of such groups largely unresolved: what are the structural features that influence whether individuals will join communities, which communities will grow rapidly, and how do the overlaps among pairs of communities change over time.Here we address these questions using two large sources of data: friendship links and community membership on LiveJournal, and co-authorship and conference publications in DBLP. Both of these datasets provide explicit user-defined communities, where conferences serve as proxies for communities in DBLP. We study how the evolution of these communities relates to properties such as the structure of the underlying social networks. We find that the propensity of individuals to join communities, and of communities to grow rapidly, depends in subtle ways on the underlying network structure. For example, the tendency of an individual to join a community is influenced not just by the number of friends he or she has within the community, but also crucially by how those friends are connected to one another. We use decision-tree techniques to identify the most significant structural determinants of these properties. We also develop a novel methodology for measuring movement of individuals between communities, and show how such movements are closely aligned with changes in the topics of interest within the communities.


International Journal of Computer Vision | 2006

Efficient Belief Propagation for Early Vision

Pedro F. Felzenszwalb; Daniel P. Huttenlocher

Markov random field models provide a robust and unified framework for early vision problems such as stereo and image restoration. Inference algorithms based on graph cuts and belief propagation have been found to yield accurate results, but despite recent advances are often too slow for practical use. In this paper we present some algorithmic techniques that substantially improve the running time of the loopy belief propagation approach. One of the techniques reduces the complexity of the inference algorithm to be linear rather than quadratic in the number of possible labels for each pixel, which is important for problems such as image restoration that have a large label set. Another technique speeds up and reduces the memory requirements of belief propagation on grid graphs. A third technique is a multi-grid method that makes it possible to obtain good results with a small fixed number of message passing iterations, independent of the size of the input images. Taken together these techniques speed up the standard algorithm by several orders of magnitude. In practice we obtain results that are as accurate as those of other global methods (e.g., using the Middlebury stereo benchmark) while being nearly as fast as purely local methods.


international world wide web conferences | 2010

Predicting positive and negative links in online social networks

Jure Leskovec; Daniel P. Huttenlocher; Jon M. Kleinberg

We study online social networks in which relationships can be either positive (indicating relations such as friendship) or negative (indicating relations such as opposition or antagonism). Such a mix of positive and negative links arise in a variety of online settings; we study datasets from Epinions, Slashdot and Wikipedia. We find that the signs of links in the underlying social networks can be predicted with high accuracy, using models that generalize across this diverse range of sites. These models provide insight into some of the fundamental principles that drive the formation of signed links in networks, shedding light on theories of balance and status from social psychology; they also suggest social computing applications by which the attitude of one user toward another can be estimated from evidence provided by their relationships with other members of the surrounding social network.


human factors in computing systems | 2010

Signed networks in social media

Jure Leskovec; Daniel P. Huttenlocher; Jon M. Kleinberg

Relations between users on social media sites often reflect a mixture of positive (friendly) and negative (antagonistic) interactions. In contrast to the bulk of research on social networks that has focused almost exclusively on positive interpretations of links between people, we study how the interplay between positive and negative relationships affects the structure of on-line social networks. We connect our analyses to theories of signed networks from social psychology. We find that the classical theory of structural balance tends to capture certain common patterns of interaction, but that it is also at odds with some of the fundamental phenomena we observe --- particularly related to the evolving, directed nature of these on-line networks. We then develop an alternate theory of status that better explains the observed edge signs and provides insights into the underlying social mechanisms. Our work provides one of the first large-scale evaluations of theories of signed networks using on-line datasets, as well as providing a perspective for reasoning about social media sites.


computer vision and pattern recognition | 2004

Efficient belief propagation for early vision

Pedro F. Felzenszwalb; Daniel P. Huttenlocher

Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical use. In this paper we present new algorithmic techniques that substantially improve the running time of the belief propagation approach. One of our techniques reduces the complexity of the inference algorithm to be linear rather than quadratic in the number of possible labels for each pixel, which is important for problems such as optical flow or image restoration that have a large label set. A second technique makes it possible to obtain good results with a small fixed number of message passing iterations, independent of the size of the input images. Taken together these techniques speed up the standard algorithm by several orders of magnitude. In practice we obtain stereo, optical flow and image restoration algorithms that are as accurate as other global methods (e.g., using the Middlebury stereo benchmark) while being as fast as local techniques.


Theory of Computing | 2004

Distance Transforms of Sampled Functions

Pedro F. Felzenszwalb; Daniel P. Huttenlocher

We describe linear-time algorithms for solving a class of problems that involve transforming a cost function on a grid using spatial information. These problems can be viewed as a generalization of classical distance transforms of binary images, where the binary image is replaced by an arbitrary function on a grid. Alternatively they can be viewed in terms of the minimum convolution of two functions, which is an important operation in grayscale morphology. A consequence of our techniques is a simple and fast method for computing the Euclidean distance transform of a binary image. Our algorithms are also applicable to Viterbi decoding, belief propagation, and optimal control.


International Journal of Computer Vision | 1990

Recognizing solid objects by alignment with an image

Daniel P. Huttenlocher; Shimon Ullman

In this paper we consider the problem of recognizing solid objects from a single two-dimensional image of a three-dimensional scene. We develop a new method for computing a transformation from a three-dimensional model coordinate frame to the two-dimensional image coordinate frame, using three pairs of model and image points. We show that this transformation always exists for three noncollinear points, and is unique up to a reflective ambiguity. The solution method is closed-form and only involves second-order equations. We have implemented a recognition system that uses this transformation method to determine possible alignments of a model with an image. Each of these hypothesized matches is verified by comparing the entire edge contours of the aligned object with the image edges. Using the entire edge contours for verification, rather than a few local feature points, reduces the chance of finding false matches. The system has been tested on partly occluded objects in highly cluttered scenes.

Collaboration


Dive into the Daniel P. Huttenlocher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Crandall

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge