Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Leaman is active.

Publication


Featured researches published by Daniel P. Leaman.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions

Erin M. Scherer; Daniel P. Leaman; Michael B. Zwick; Andrew J. McMichael; Dennis R. Burton

The broadly neutralizing anti-HIV antibody 4E10 recognizes an epitope very close to the virus membrane on the glycoprotein gp41. It was previously shown that epitope recognition improves in a membrane context and that 4E10 binds directly, albeit weakly, to lipids. Furthermore, a crystal structure of Fab 4E10 complexed to an epitope peptide revealed that the centrally placed, protruding H3 loop of the antibody heavy chain does not form peptide contacts. To investigate the hypothesis that the H3 loop apex might interact with the viral membrane, two Trp residues in this region were substituted separately or in combination with either Ala or Asp by site-directed mutagenesis. The resultant IgG variants exhibited similar affinities for an epitope peptide as WT 4E10 but lower apparent affinities for both viral membrane mimetic liposomes and Env(−) virus. Variants also exhibited lower apparent affinities for Env(+) virions and failed to significantly neutralize a number of 4E10-sensitive viruses. For the extremely sensitive HXB2 virus, variants did neutralize, but at 37- to >250-fold lower titers than WT 4E10, with Asp substitutions exerting a greater effect on neutralization potency than Ala substitutions. Because reductions in lipid binding reflect trends in neutralization potency, we conclude that Trp residues in the antibody H3 loop enable membrane proximal epitope recognition through favorable lipid interactions. The requirement for lipophilic residues such as Trp adjacent to the antigen binding site may explain difficulties in eliciting 4E10-like neutralizing antibody responses by immunization and helps define a unique motif for antibody recognition of membrane proximal antigens.


Journal of Virology | 2010

In-Solution Virus Capture Assay Helps Deconstruct Heterogeneous Antibody Recognition of Human Immunodeficiency Virus Type 1

Daniel P. Leaman; Heather Kinkead; Michael B. Zwick

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) on whole virions is heterogeneous, so molecular analysis of Env with monoclonal antibodies (MAbs) is challenging. Virus capture assays (VCAs) involving immobilized MAbs are typically used, but these assays suffer from immobilization artifacts and do not provide binding constants. Furthermore, we show here that certain HIV-1 neutralizing MAbs, including 2G12, 4E10, 2F5, Z13e1, and D5, will capture virion particles completely devoid of Env. We modified the VCA such that MAbs and virions are incubated in solution, and unbound MAbs are removed prior to the capture step. This modification nearly eliminated evidence of Env-independent binding by MAbs to virions and allowed determination of apparent affinity constants in solution. Three important qualitative observations were further revealed. First, neutralizing MAbs 2F5, 4E10, and Z13e1 against the membrane-proximal external region (MPER) of HIV-1 gp41 were found to capture virions efficiently only if a significant amount of uncleaved gp160 or synthetic MPER peptide was present. Second, we show how non-native forms of Env vary by Env genotype and that Env from HIV-1JR-FL is more homogeneously trimeric than that from HIV-1JR-CSF. Third, we determined that Env containing all or parts of gp41, including uncleaved gp160, binds spontaneously to free virions. This exogenous Env is an indiscriminate molecular “bridge” between Env-specific Ab and virions and can affect VCA analyses, particularly using pseudotyped virions. Heterogeneity in Env from endogenous and exogenous sources might also subvert humoral immunity to HIV-1, so in-solution VCAs may help to dissect this heterogeneity for vaccine design purposes.


Nature Communications | 2015

Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

Jeong Hyun Lee; Daniel P. Leaman; Arthur S. Kim; Alba Torrents de la Peña; Kwinten Sliepen; Anila Yasmeen; Ronald Derking; Alejandra Ramos; Steven W. de Taeye; Gabriel Ozorowski; Florian Klein; Dennis R. Burton; Michel C. Nussenzweig; Pascal Poignard; John P. Moore; Per Johan Klasse; Rogier W. Sanders; Michael B. Zwick; Ian A. Wilson; Andrew B. Ward

The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120–gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120–gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.


PLOS Pathogens | 2014

Antibody to gp41 MPER Alters Functional Properties of HIV-1 Env without Complete Neutralization

Arthur S. Kim; Daniel P. Leaman; Michael B. Zwick

Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.


PLOS Pathogens | 2013

Increased Functional Stability and Homogeneity of Viral Envelope Spikes through Directed Evolution

Daniel P. Leaman; Michael B. Zwick

The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure.


PLOS ONE | 2011

Functional Stability of Unliganded Envelope Glycoprotein Spikes among Isolates of Human Immunodeficiency Virus Type 1 (HIV-1)

Nitish Agrawal; Daniel P. Leaman; Eric Rowcliffe; Heather Kinkead; Raman Nohria; Junya Akagi; Katherine Bauer; Sean X. Du; Robert G. Whalen; Dennis R. Burton; Michael B. Zwick

The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34). For select Envs (n = 10), the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T90 (p = 0.029), though two ‘outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.


Current Topics in Medicinal Chemistry | 2011

Targeting HIV-1 gp41 in Close Proximity to the Membrane Using Antibody and Other Molecules

Johannes S. Gach; Daniel P. Leaman; Michael B. Zwick

HIV-1 envelope glycoprotein (Env) spikes are supported at the viral membrane interface by a highly conserved and hydrophobic region of gp41, designated the membrane-proximal external region (MPER). The MPER is mandatory for infection of host cells by HIV-1, and is the target of some of the most broadly neutralizing antibodies described to date. As such, the MPER is also of considerable interest for HIV vaccine design. However, structural models indicate that the MPER assumes distinct conformations prior to and leading up to Env-mediated fusion. Thus, the more of these distinct conformations that antibodies and inhibitors can recognize will likely be the better for antiviral potency. In addition to its flexibility, the MPER is lipophilic and its accessibility to bulky macromolecules is limited by steric and kinetic blocks that present particular challenges for eliciting HIV-1 neutralizing antibodies. Moreover, the ability of the MPER and viral membrane to combine as a complex has critical mechanistic implications for molecules that target lipid-bound and/or unbound states. Interestingly, membrane affinity frequently appears to enhance the potency of both fusion inhibitors and antibodies to different sites on gp41. We therefore highlight mechanisms to be harnessed in targeting membraneproximal sites on HIV gp41 for both vaccine and fusion inhibitor design. Such design efforts will likely need to draw upon knowledge of MPER structure and function, and may in turn inform analogous approaches to MPERs of other enveloped viruses and systems.


Journal of Virology | 2010

A Low-Molecular-Weight Entry Inhibitor of both CCR5- and CXCR4-Tropic Strains of Human Immunodeficiency Virus Type 1 Targets a Novel Site on gp41

Edward J. Murray; Daniel P. Leaman; Nishant Pawa; Hannah Perkins; Chris Pickford; Manos Perros; Michael B. Zwick; Scott L. Butler

ABSTRACT A low-molecular-weight human immunodeficiency virus type 1 (HIV-1) inhibitor, PF-68742 (molecular weight, 573), has been identified in a high-throughput screen for compounds that block HIV-1 envelope glycoprotein (Env)-mediated fusion. The compound is shown to be potent against R5 and X4 isolates in both cell-cell fusion and antiviral assays (50% effective concentrations of ∼0.1 to 1 μM). Postfusion and HIV-1 pseudotyping control experiments confirm that PF-68742 is an entry inhibitor with Env as the specific target for antiviral action. PF-68742 was not able to block binding of monomeric gp120 to soluble CD4 or the binding of gp120:CD4 complexes to cell-associated CCR5, thus distinguishing PF-68742 from described gp120 antagonists and coreceptor binders. Escape variants of HIV-1NL4-3 were selected, and all resistant viruses were found to contain a common G514R (HxB2 numbering) mutation in Env, located proximal to the furin cleavage site in the fusion peptide of gp41. When introduced into wild-type NL4-3 gp41, G514R conferred resistance to PF-68742. Resistance via G514R is shown to be associated with enhancement of virion infectivity by PF-68742 that may result from altered properties of inhibitor-bound Env, rather than from a loss of compound binding. Wild-type viruses and those with substitutions in the disulfide loop (DSL) region of gp41 were also examined for PF-68742 sensitivity. Here, complete resistance to PF-68742 was found to occur through changes outside of position 514, including in the gp41 DSL region. The results highlight PF-68742 as a starting point for novel therapies against HIV-1 and provide new insights into models of Env-mediated fusion.


Journal of Virology | 2015

Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes

Daniel P. Leaman; Jeong Hyun Lee; Andrew B. Ward; Michael B. Zwick

ABSTRACT HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.


PLOS ONE | 2013

Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate.

Kristin Narayan; Nitish Agrawal; Sean X. Du; Janelle Muranaka; Katherine Bauer; Daniel P. Leaman; Pham Phung; Kay Limoli; Helen Chen; Rebecca I. Boenig; Terri Wrin; Michael B. Zwick; Robert G. Whalen

Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env) using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼103 to 104 serum dilution) against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env) or other type-specific responses (targeting V1, V2, or V3 variable regions). The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth.

Collaboration


Dive into the Daniel P. Leaman's collaboration.

Top Co-Authors

Avatar

Michael B. Zwick

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arthur S. Kim

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Edurne Rujas

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

José L. Nieva

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Sara Insausti

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Heather Kinkead

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jeong Hyun Lee

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge