Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Poole is active.

Publication


Featured researches published by Daniel P. Poole.


Journal of Clinical Investigation | 2008

Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents

Eunice André; Barbara Campi; Serena Materazzi; Marcello Trevisani; Silvia Amadesi; Daniela Massi; Christophe Créminon; Natalya Vaksman; Romina Nassini; Maurizio Civelli; Pier Giovanni Baraldi; Daniel P. Poole; Nigel W. Bunnett; Pierangelo Geppetti; Riccardo Patacchini

Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.


Journal of Clinical Investigation | 2013

The TGR5 receptor mediates bile acid–induced itch and analgesia

Farzad Alemi; Edwin Kwon; Daniel P. Poole; TinaMarie Lieu; Victoria Lyo; Fiore Cattaruzza; Ferda Cevikbas; Martin Steinhoff; Romina Nassini; Serena Materazzi; Raquel Guerrero-Alba; Eduardo Valdez-Morales; Graeme S. Cottrell; Kristina Schoonjans; Pierangelo Geppetti; Stephen Vanner; Nigel W. Bunnett; Carlos U. Corvera

Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.


Neurogastroenterology and Motility | 2010

Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system

Daniel P. Poole; Cody B. Godfrey; Fiore Cattaruzza; Graeme S. Cottrell; Jacob G. Kirkland; Juan-Carlos Pelayo; Nigel W. Bunnett; Carlos U. Corvera

Background  Bile acids (BAs) regulate cells by activating nuclear and membrane‐bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane‐bound G‐protein‐coupled receptor that can mediate the rapid, transcription‐independent actions of BAs. Although BAs have well‐known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract.


Gastroenterology | 2013

The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice

Farzad Alemi; Daniel P. Poole; Jonathon V. Chiu; Kristina Schoonjans; Fiore Cattaruzza; John R. Grider; Nigel W. Bunnett; Carlos U. Corvera

BACKGROUND & AIMS Abnormal delivery of bile acids (BAs) to the colon as a result of disease or therapy causes constipation or diarrhea by unknown mechanisms. The G protein-coupled BA receptor TGR5 (or GPBAR1) is expressed by enteric neurons and endocrine cells, which regulate motility and secretion. METHODS We analyzed gastrointestinal and colon transit, as well as defecation frequency and water content, in wild-type, knockout, and transgenic mice (trg5-wt, tgr5-ko, and tgr5-tg, respectively). We analyzed colon tissues for contractility, peristalsis, and transmitter release. RESULTS Deoxycholic acid inhibited contractility of colonic longitudinal muscle from tgr5-wt but not tgr5-ko mice. Application of deoxycholic acid, lithocholic acid, or oleanolic acid (a selective agonist of TGR5) to the mucosa of tgr5-wt mice caused oral contraction and caudal relaxation, indicating peristalsis. BAs stimulated release of the peristaltic transmitters 5-hydroxytryptamine and calcitonin gene-related peptide; antagonists of these transmitters suppressed BA-induced peristalsis, consistent with localization of TGR5 to enterochromaffin cells and intrinsic primary afferent neurons. tgr5-ko mice did not undergo peristalsis or transmitter release in response to BAs. Mechanically induced peristalsis and transmitter release were not affected by deletion of tgr5. Whole-gut transit was 1.4-fold slower in tgr5-ko than tgr5-wt or tgr5-tg mice, whereas colonic transit was 2.2-fold faster in tgr5-tg mice. Defecation frequency was reduced 2.6-fold in tgr5-ko and increased 1.4-fold in tgr5-tg mice compared with tgr5-wt mice. Water content in stool was lower (37%) in tgr5-ko than tgr5-tg (58%) or tgr5-wt mice (62%). CONCLUSIONS The receptor TGR5 mediates the effects of BAs on colonic motility, and deficiency of TGR5 causes constipation in mice. These findings might mediate the long-known laxative properties of BAs, and TGR5 might be a therapeutic target for digestive diseases.


Neurogastroenterology and Motility | 2011

The involvement of nitric oxide synthase neurons in enteric neuropathies

Leni R. Rivera; Daniel P. Poole; Michelle Thacker; John B. Furness

Nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS) is a transmitter of inhibitory neurons supplying the muscle of the gastrointestinal tract. Transmission from these neurons is necessary for sphincter relaxation that allows the passage of gut contents, and also for relaxation of muscle during propulsive activity in the colon. There are deficiencies of transmission from NOS neurons to the lower esophageal sphincter in esophageal achalasia, to the pyloric sphincter in hypertrophic pyloric stenosis and to the internal anal sphincter in colonic achalasia. Deficits in NOS neurons are observed in two disorders in which colonic propulsion fails, Hirschsprung’s disease and Chagas’ disease. In addition, damage to NOS neurons occurs when there is stress to cells, in diabetes, resulting in gastroparesis, and following ischemia and reperfusion. A number of factors may contribute to the propensity of NOS neurons to be involved in enteric neuropathies. One of these is the failure of the neurons to maintain Ca2+ homeostasis. In neurons in general, stress can increase cytoplasmic Ca2+, causing a Ca2+ toxicity. NOS neurons face the additional problem that NOS is activated by Ca2+. This is hypothesized to produce an excess of NO, whose free radical properties can cause cell damage, which is exacerbated by peroxynitrite formed when NO reacts with oxygen free radicals.


Gastroenterology | 2014

The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice

TinaMarie Lieu; Gihan Jayaweera; Peishen Zhao; Daniel P. Poole; Dane D. Jensen; Megan S. Grace; Peter McIntyre; Romke Bron; Yvette M. Wilson; Matteus Krappitz; Silke Haerteis; Christoph Korbmacher; Martin Steinhoff; Romina Nassini; Serena Materazzi; Pierangelo Geppetti; Carlos U. Corvera; Nigel W. Bunnett

BACKGROUND & AIMS Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G-protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice. METHODS Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice was analyzed by immunofluorescence, in situ hybridization, and single-cell polymerase chain reaction. TGR5-induced activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary sensory neurons by measuring Ca(2+) signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1(-/-) mice. RESULTS TGR5 and TRPA1 protein and messenger RNA were expressed by cutaneous afferent neurons. In HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent activation and sensitization of TRPA1 by mechanisms that required Gβγ, protein kinase C, and Ca(2+). Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice. CONCLUSIONS BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.


Journal of Biological Chemistry | 2013

Protease-activated Receptor 2 (PAR2) Protein and Transient Receptor Potential Vanilloid 4 (TRPV4) Protein Coupling Is Required for Sustained Inflammatory Signaling

Daniel P. Poole; Silvia Amadesi; Nicholas A. Veldhuis; Fe C. Abogadie; TinaMarie Lieu; William Darby; Wolfgang Liedtke; Michael J. Lew; Peter McIntyre; Nigel W. Bunnett

Background: Receptors activate channels of sensory nerves to cause inflammation and pain by unknown mechanisms. Results: Protease-activated receptor 2 (PAR2) stimulated transient receptor potential vanilloid 4 (TRPV4) by generation of channel agonists. This required a key TRPV4 tyrosine and induced inflammation. Conclusion: PAR2 opens TRPV4 by functional coupling. Significance: Antagonism of PAR2-TRPV4 coupling could alleviate inflammation and pain. G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR2), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR2 regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR2 agonist stimulated a transient increase in [Ca2+]i. TRPV4 expression led to a markedly sustained increase in [Ca2+]i. Removal of extracellular Ca2+ and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A2 and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR2 generates arachidonic acid-derived lipid mediators, such as 5′,6′-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR2-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR2 was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR2 signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR2-stimulated neurogenic inflammation. Thus, PAR2 activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR2.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice

Eugene P. Ceppa; Fiore Cattaruzza; Victoria Lyo; Silvia Amadesi; Juan-Carlos Pelayo; Daniel P. Poole; Natalya Vaksman; Wolfgang Liedtke; David M. Cohen; Eileen F. Grady; Nigel W. Bunnett; Kimberly S. Kirkwood

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.


Journal of Biological Chemistry | 2013

The Bile Acid Receptor TGR5 Does Not Interact with β-arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts

Dane D. Jensen; Cody B. Godfrey; Christian Niklas; Meritxell Canals; Martina Kocan; Daniel P. Poole; Jane E. Murphy; Farzad Alemi; Graeme S. Cottrell; Christoph Korbmacher; Nevin A. Lambert; Nigel W. Bunnett; Carlos U. Corvera

Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders. TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.


Gastroenterology | 2015

Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome

Nicolas Cenac; Tereza Bautzova; Pauline Le Faouder; Nicholas A. Veldhuis; Daniel P. Poole; Corinne Rolland; Jessica Bertrand; Wolfgang Liedtke; Marc Dubourdeau; Justine Bertrand-Michel; Lisa Zecchi; Vincenzo Stanghellini; Nigel W. Bunnett; Giovanni Barbara; Nathalie Vergnolle

BACKGROUND & AIMS In mice, activation of the transient receptor potential cation channels (TRP) TRPV1, TRPV4, and TRPA1 causes visceral hypersensitivity. These receptors and their agonists might be involved in development of irritable bowel syndrome (IBS). We investigated whether polyunsaturated fatty acid (PUFA) metabolites, which activate TRPs, are present in colon tissues from patients with IBS and act as endogenous agonists to induce hypersensitivity. METHODS We analyzed colon biopsy samples from 40 patients with IBS (IBS biopsies) and 11 healthy individuals undergoing colorectal cancer screening (controls), collected during colonoscopy at the University of Bologna, Italy. Levels of the PUFA metabolites that activate TRPV1 (12-hydroperoxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4), TRPV4 (5,6-epoxyeicosatrienoic acid [EET] and 8,9-EET), and TRPA1 (PGA1, 8-iso-prostaglandin A2, and 15-deoxy-Δ-prostaglandin J2) were measured in biopsies and their supernatants using liquid chromatography and tandem mass spectrometry; we also measured levels of the PUFA metabolites prostaglandin E2 (PGE2) and resolvins. C57Bl6 mice were given intrathecal injections of small interfering RNAs to reduce levels of TRPV4, or control small interfering RNAs, along with colonic injections of biopsy supernatants; visceral hypersensitivity was measured based on response to colorectal distension. Mouse sensory neurons were cultured and incubated with biopsy supernatants and lipids extracted from biopsies or colons of mice. Immunohistochemistry was used to detect TRPV4 in human dorsal root ganglia samples (from the National Disease Research Interchange). RESULTS Levels of the TRPV4 agonist 5,6-EET, but not levels of TRPV1 or TRPA1 agonists, were increased in IBS biopsies compared with controls; increases correlated with pain and bloating scores. Supernatants from IBS biopsies, but not from controls, induced visceral hypersensitivity in mice. Small interfering RNA knockdown of TRPV4 in mouse primary afferent neurons inhibited the hypersensitivity caused by supernatants from IBS biopsies. Levels of 5,6-EET and 15-HETE were increased in colons of mice with, but not without, visceral hypersensitivity. PUFA metabolites extracted from IBS biopsies or colons of mice with visceral hypersensitivity activated mouse sensory neurons in vitro, by activating TRPV4. Mouse sensory neurons exposed to supernatants from IBS biopsies produced 5,6-EET via a mechanism that involved the proteinase-activated receptor-2 and cytochrome epoxygenase. In human dorsal root ganglia, TPV4 was expressed by 35% of neurons. CONCLUSIONS Colon tissues from patients with IBS have increased levels of specific PUFA metabolites. These stimulate sensory neurons from mice and generate visceral hypersensitivity via activation of TRPV4.

Collaboration


Dive into the Daniel P. Poole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dane D. Jensen

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Emily M. Eriksson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge