Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel P. Weitekamp is active.

Publication


Featured researches published by Daniel P. Weitekamp.


Journal of the American Chemical Society | 2008

PASADENA Hyperpolarization of Succinic Acid for MRI and NMR Spectroscopy

Eduard Y. Chekmenev; Jan Hövener; Valerie A. Norton; Kent Harris; Lynne S. Batchelder; Pratip Bhattacharya; Brian D. Ross; Daniel P. Weitekamp

We use the PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) method to achieve 13C polarization of approximately 20% in seconds in 1-13C-succinic-d2 acid. The high-field 13C multiplets are observed as a function of pH, and the line broadening of C1 is pronounced in the region of the pK values. The 2JCH, 3JCH, and 3JHH couplings needed for spin order transfer vary with pH and are best resolved at low pH leading to our use of pH approximately 3 for both the molecular addition of parahydrogen to 1-13C-fumaric acid-d2 and the subsequent transfer of spin order from the nascent protons to C1 of the succinic acid product. The methods described here may generalize to hyperpolarization of other carboxylic acids. The C1 spin-lattice relaxation time at neutral pH and 4.7 T is measured as 27 s in H2O and 56 s in D2O. Together with known rates of succinate uptake in kidneys, this allows an estimate of the prospects for the molecular spectroscopy of metabolism.


Journal of the American Chemical Society | 2009

Hyperpolarized 1H NMR Employing Low γ Nucleus for Spin Polarization Storage

Eduard Y. Chekmenev; Valerie A. Norton; Daniel P. Weitekamp; Pratip Bhattacharya

Here, we demonstrate the utility of low gamma nuclei for spin storage of hyperpolarization followed by proton detection, which theoretically can provide up to approximately (gamma[1H]/gamma[X])(2) gain in sensitivity in hyperpolarized biomedical MR. This is exemplified by hyperpolarized 1-(13)C sites of 2,2,3,3-tetrafluoropropyl 1-(13)C-propionate-d(3) (TFPP), (13)C T(1) = 67 s in D(2)O, and 1-(13)C-succinate-d(2), (13)C T(1) = 105 s in D(2)O, pH 11, using PASADENA. In a representative example, the spin polarization was stored on (13)C for 24 and 70 s, respectively, while the samples were transferred from a low magnetic field polarizer operating at 1.76 mT to a 4.7 T animal MR scanner. Following sample delivery, the refocused INEPT pulse sequence was used to transfer spin polarization from (13)C to protons with an efficiency of 50% for TFPP and 41% for 1-(13)C-succinate-d(2) increasing the overall NMR sensitivity by a factor of 7.9 and 6.5, respectively. The low gamma nuclei exemplified here by (13)C with a T(1) of tens of seconds acts as an efficient spin polarization storage, while J-coupled protons are better for NMR detection.


Solid State Nuclear Magnetic Resonance | 1998

Force-detected magnetic resonance without field gradients

Garett M. Leskowitz; Louis A. Madsen; Daniel P. Weitekamp

A novel method of nuclear magnetic resonance (NMR) is described which promises to be preferable to known general methods at sample length scales below approximately 100 microm. Its advantages stem from the seemingly paradoxical combination of a homogeneous static magnetic field and detection of a mechanical force between a spin-bearing sample and a magnet assembly. In contrast to other methods of force-detected nuclear magnetic resonance (FDNMR), the method is characterized by better observation of magnetization, enhanced resolution, and no gradient (BOOMERANG), and it is generally applicable with respect to sample composition, pulse sequence, and magnetic field strength. Further advantages of portability and low cost stem from the small instrument volume and mass and promise to extend the use of NMR to new applications and environments. A sensitivity analysis, relevant to spectroscopy or imaging, quantifies the advantage of BOOMERANG relative to magnetic induction using microcoils and to FDNMR methods that rely on large gradients of the magnetic field at the sample.


Journal of Physical Chemistry B | 2008

Fluorine-19 NMR Chemical Shift Probes Molecular Binding to Lipid Membranes

Eduard Y. Chekmenev; Siu-Kei Chow; Daniel Tofan; Daniel P. Weitekamp; Brian D. Ross; Pratip Bhattacharya

The binding of amphiphilic molecules to lipid bilayers is followed by 19F NMR using chemical shift and line shape differences between the solution and membrane-tethered states of -CF 3 and -CHF 2 groups. A chemical shift separation of 1.6 ppm combined with a high natural abundance and high sensitivity of 19F nuclei offers an advantage of using 19F NMR spectroscopy as an efficient tool for rapid time-resolved screening of pharmaceuticals for membrane binding. We illustrate the approach with molecules containing both fluorinated tails and an acrylate moiety, resolving the signals of molecules in solution from those bound to synthetic dimyristoylphosphatidylcholine bilayers both with and without magic angle sample spinning. The potential in vitro and in vivo biomedical applications are outlined. The presented method is applicable with the conventional NMR equipment, magnetic fields of several Tesla, stationary samples, and natural abundance isotopes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Imaging quantum confinement with optical and POWER (perturbations observed with enhanced resolution) NMR

James G. Kempf; Michael Allen Miller; Daniel P. Weitekamp

The nanoscale distributions of electron density and electric fields in GaAs semiconductor devices are displayed with NMR experiments. The spectra are sensitive to the changes to the nuclear-spin Hamiltonian that are induced by perturbations delivered in synchrony with a line-narrowing pulse sequence. This POWER (perturbations observed with enhanced resolution) method enhanced resolution up to 103-fold, revealing the distribution of perturbations over nuclear sites. Combining this method with optical NMR, we imaged quantum-confined electron density in an individual AlGaAs/GaAs heterojunction via hyperfine shifts. Fits to the coherent evolution and relaxation of nuclei within a hydrogenic state established one-to-one correspondence of radial position to frequency. Further experiments displayed the distribution of photo-induced electric field within the same states via a quadrupolar Stark effect. These unprecedented high-resolution distributions discriminate between competing models for the luminescence and support an excitonic state, perturbed by the interface, as the dominant source of the magnetically modulated luminescence.


Journal of Magnetic Resonance | 2010

A selective 15N-to-1H polarization transfer sequence for more sensitive detection of 15N-choline

Jessica A. Pfeilsticker; Jason E. Ollerenshaw; Valerie A. Norton; Daniel P. Weitekamp

The sensitivity and information content of heteronuclear nuclear magnetic resonance is frequently optimized by transferring spin order of spectroscopic interest to the isotope of highest detection sensitivity prior to observation. This strategy is extended to 15N-choline using the scalar couplings to transfer polarization from 15N to cholines nine methyl 1H spins in high field. A theoretical analysis of a sequence using nonselective pulses shows that the optimal efficiency of this transfer is decreased by 62% as the result of competing 15N-(1)H couplings involving cholines four methylene protons. We have therefore incorporated a frequency-selective pulse to support evolution of only the 15N-methyl 1H coupling during the transfer period. This sequence provides a 52% sensitivity enhancement over the nonselective version in in vitro experiments on a sample of thermally polarized 15N-choline in D2O. Further, the 15N T1 of choline in D2O was measured to be 217+/-38 s, the 15N-methyl 1H coupling constant was found to be 0.817+/-0.001 Hz, and the larger of cholines two 15N-methylene 1H coupling constants was found to be 3.64+/-0.0 1Hz. Possible improvements and applications to in vivo experiments using long-lived hyperpolarized heteronuclear spin order are discussed.


Journal of Vacuum Science & Technology B | 1992

Can nuclear magnetic resonance resolve epitaxial layers

Steven K. Buratto; David N. Shykind; Daniel P. Weitekamp

The recently demonstrated technique of time‐sequenced optical nuclear magnetic resonance in GaAs has made possible the detection of spectra free of the line shape distortions that accompanied earlier steady‐state methods with an improvement in sensitivity as well. This work examines the possibility of even higher spectral resolution by means of selective averaging with radio frequency‐optical multiple‐pulse techniques with the aim of isolating the site‐specific changes in the spin Hamiltonian associated with excitation to localized states of the conduction band, as in quantum wells. Simulations are presented to evaluate the approach proposed. It is concluded that such experiments are capable of the sensitivity and resolution to resolve individual epitaxial layers in high‐quality structures and would provide unprecedented detail on the electronic structure and its uniformity by way of the nuclear quadrupole and spin‐averaged hyperfine interactions.


Journal of Vacuum Science & Technology B | 2000

Method for atomic-layer-resolved measurement of polarization fields by nuclear magnetic resonance

James G. Kempf; Daniel P. Weitekamp

A nuclear magnetic resonance (NMR) method of probing the dielectric response to an alternating electric field is described, which is applicable to noncentrosymmetric sites with nuclear spin I>1/2. A radio-frequency electric field induces a linear quadrupole Stark effect at a multiple of the nuclear Larmor frequency. This perturbation is applied in the windows of an NMR multiple-pulse line-narrowing sequence in such a way that the resulting nonsecular spin interactions are observed as first-order quadrupole satellites, free of line broadening by the usual dominant static interactions. A simulation of the 69Ga spectrum for the nuclei within the two-dimensional electron gas of a 10 nm quantum well predicts resolution of individual atomic layers in single devices due to the spatial dependence of the polarization response of the quantum-confined carriers to the applied field. This method is part of a more general strategy, perturbations observed with enhanced resolution NMR. Experimentally realized examples in GaAs include spectrally resolving electron probability densities surrounding optically relevant point defects and probing the changes in radial electric field associated with the light-on and light-off states of these shallow traps. Adequate sensitivity for such experiments in individual epitaxial structures is achieved by optical nuclear polarization followed by time-domain NMR observed via nuclear Larmor-beat detection of luminescence.


Journal of Chemical Physics | 2011

Communication: partial polarization transfer for single-scan spectroscopy and imaging.

Valerie A. Norton; Daniel P. Weitekamp

A method is presented to partially transfer nuclear spin polarization from one isotope S to another isotope I by the way of heteronuclear spin couplings, while minimizing the loss of spin order to other degrees of freedom. The desired I spin polarization to be detected is a design parameter, while the sequence of pulses at the two Larmor frequencies is optimized to store the greatest unused S spin longitudinal polarization for subsequent use. The unitary evolution for the case of I(N)S spin systems illustrates the potentially ideal efficiency of this strategy, which is of particular interest when the spin-lattice relaxation time of S greatly exceeds that of I. Explicit timing and pulses are tabulated for the cases for which M ≤ 10 partial transfers each result in equal final polarization of 1/M or more compared to the final I polarization expected in a single transfer for N = 1, 2, or 3 I spins. Advantages for the ratiometric study of reacting molecules and hyperpolarized initial conditions are outlined.


Review of Scientific Instruments | 2008

An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

Kempf Jg; Paul J. Carson; D. A. Shykind; J. Y. Hwang; M. A. Miller; Daniel P. Weitekamp

Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs/GaAs heterojunction. NMR linewidths down to 4.1 Hz full width at half maximum were obtained, a 10(3)-fold resolution enhancement relative any previous optically detected NMR experiment.

Collaboration


Dive into the Daniel P. Weitekamp's collaboration.

Top Co-Authors

Avatar

Garett M. Leskowitz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie A. Norton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul J. Carson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David N. Shykind

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eduard Y. Chekmenev

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pratip Bhattacharya

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brian D. Ross

Huntington Medical Research Institutes

View shared research outputs
Top Co-Authors

Avatar

C. Russell Bowers

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Y. Hwang

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge