Daniel Pastor-Galán
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Pastor-Galán.
Computers & Geosciences | 2016
Mathijs R. Koymans; Cor G. Langereis; Daniel Pastor-Galán; Douwe J. J. van Hinsbergen
This contribution provides an overview of Paleomagnetism.org, an open-source, multi-platform online environment for paleomagnetic data analysis. Paleomagnetism.org provides an interactive environment where paleomagnetic data can be interpreted, evaluated, visualized, and exported. The Paleomagnetism.org application is split in to an interpretation portal, a statistics portal, and a portal for miscellaneous paleomagnetic tools.In the interpretation portal, principle component analysis can be performed on visualized demagnetization diagrams. Interpreted directions and great circles can be combined to find great circle solutions. These directions can be used in the statistics portal, or exported as data and figures.The tools in the statistics portal cover standard Fisher statistics for directions and VGPs, including other statistical parameters used as reliability criteria. Other available tools include an eigenvector approach foldtest, two reversal test including a Monte Carlo simulation on mean directions, and a coordinate bootstrap on the original data. An implementation is included for the detection and correction of inclination shallowing in sediments following TK03.GAD. Finally we provide a module to visualize VGPs and expected paleolatitudes, declinations, and inclinations relative to widely used global apparent polar wander path models in coordinates of major continent-bearing plates.The tools in the miscellaneous portal include a net tectonic rotation (NTR) analysis to restore a body to its paleo-vertical and a bootstrapped oroclinal test using linear regressive techniques, including a modified foldtest around a vertical axis.Paleomagnetism.org provides an integrated approach for researchers to work with visualized (e.g. hemisphere projections, Zijderveld diagrams) paleomagnetic data. The application constructs a custom exportable file that can be shared freely and included in public databases. This exported file contains all data and can later be imported to the application by other researchers. The accessibility and simplicity through which paleomagnetic data can be interpreted, analyzed, visualized, and shared makes Paleomagnetism.org of interest to the community. Online multi-platform environment analysis of Paleomagnetic data.High quality figures of visualized paleomagnetic can be downloaded.Shareable files containing all original data and interpretations can be saved.Accessible environment in which paleomagnetic data can be evaluated and visualized.
Geological Society of America Bulletin | 2012
Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; Gernold Zulauf; Friedhelm E. Zanella
We report on a series of analogue modeling experiments that study the oroclinal buckling process as a thick-skinned process involving the entire lithosphere. The results obtained in the experiments suggest that, during oroclinal buckling, extension in the outer arc and significant shortening in the inner arc are produced by tangential longitudinal strain as the main mechanism of deformation. The models also reveal that the mantle lithosphere thickens in different noncylindrical ways depending on the initial lithospheric mantle thickness: from almost recumbent to folding with subvertical axial planes for the thinnest to the thickest mantle lithosphere, respectively. The results provide useful insights into thick-skinned orocline buckling as it is interpreted to have happened in the Iberian-Armorican Arc.
Geology | 2015
Daniel Pastor-Galán; Thomas Groenewegen; Daniël Brouwer; Wout Krijgsman; Mark J. Dekkers
The supercontinent Pangea formed in the late Carboniferous as a result of the Gondwana-Laurussia collision, producing the strongly sinuous Variscan–Alleghanian orogen. Iberia is interpreted to comprise two Variscan bends, forming an S-shaped orogenic belt: the Cantabrian orocline to the north and the Central Iberian bend to the south. Coeval formation of both oroclines, however, requires significant north-south shortening (in present-day coordinates) during Pangea’s amalgamation. In contrast to the Cantabrian orocline, neither the kinematics nor geometry of the Central Iberian bend is well constrained. We provide paleomagnetic data from the southern limb of the Central Iberian bend, showing ∼60° counterclockwise vertical axis rotation during the late Carboniferous to early Permian, comparable to that determined for the southern limb of the Cantabrian orocline. This result is incompatible with the hypothesized S-shaped bend in the Iberian Variscides. We argue that Central Iberia, if really bent, must have acquired its curvature before the Cantabrian orocline, the curvature being an inherited structure. We propose a new mechanism of Pangea formation, compatible with the geology, geochronology, and paleomagnetism, in which a clockwise rotation of Gondwana produces the necessary change in the stress field to form the late Variscan Cantabrian orocline.
Geological Society, London, Special Publications | 2017
Maud J.M. Meijers; Brigitte Smith; Daniel Pastor-Galán; Renzo Degenaar; N. Sadradze; Shota Adamia; Lilit Sahakyan; Ara Avagyan; Marc Sosson; Yann Rolland; Cor G. Langereis; Carla Müller
Abstract The Eastern Pontides–Lesser Caucasus fold–thrust belt displays a peculiar northwards arc-shaped geometry that was defined as an orocline in earlier studies. The Lesser Caucasus was affected by two main tectonic events that could have caused orocline formation: (1) Paleocene–Eocene collision of the South Armenian Block with Eurasia; and (2) Oligocene–Miocene Arabia–Eurasia collision. We tested the hypothesis that the Lesser Caucasus is an orocline and aimed to time the formation of this orocline. To determine the vertical axis rotations, 37 sites were sampled for palaeomagnetism in rocks of Upper Cretaceous–Miocene age in Georgia and Armenia. In addition, we compiled a review of c. 100 available datasets. A strike test was applied to the remaining datasets, which were divided into four chronological sub-sets, leading us to conclude that the Eastern Pontides–Lesser Caucasus fold–thrust belt forms a progressive orocline. We concluded that: (1) some pre-existing curvature must have been present before the Late Cretaceous; (2) the orocline acquired part of its curvature after the Paleocene and before the Middle Eocene as a result of South Armenian Block–Eurasia collision; and (3) about 50% of the curvature formed after the Eocene and probably before the Late Miocene, probably as a result of Arabia–Eurasia collision. Supplementary material: Results from rock magnetic experiments, reversal and fold tests and equal area projections of the characteristic remanent magnetizations for each site, as well as biostratigraphic ages and a table with palaeomagnetic results from the literature review (with assigned numbers referred to in the text) are available at http://www.geolsoc.org.uk/SUP18852.
Journal of the Geological Society | 2015
Gabriel Gutiérrez-Alonso; Javier Fernández-Suárez; Daniel Pastor-Galán; Stephen T. Johnston; Ulf Linnemann; Mandy Hofmann; Jessica Shaw; Juan Ramón Colmenero; P. Hernández
Seven samples of Siluro-Devonian sedimentary rocks from the Cantabrian and Central Iberian zones of the Iberian Variscan belt have been investigated for provenance and contain four main age populations in variable relative proportion: Ediacaran–Cryogenian (c. 0.55–0.8 Ga), Tonian–Stenian (0.85–1.2 Ga), Palaeoproterozoic (c. 1.8–2.2 Ga) and Archaean (c. 2.5–3.3 Ga). Five samples contain very minor Palaeozoic (Cambrian) zircons and six samples contain minor but significant zircons of Middle and Early Mesoproterozoic (Ectasian–Calymmian, 1.6–1.8) age. These data highlight the transition from an arc environment to a stable platform following the opening of the Rheic Ocean. Variations in detrital zircon populations in Middle–Late Devonian times reflect the onset of Variscan convergence between Laurussia and Gondwana. The presence of a high proportion of zircons of Tonian–Stenian age in Devonian sedimentary rocks may be interpreted as (1) the existence of a large Tonian–Stenian arc terrane exposed in the NE African realm (in or around the Arabian–Nubian Shield), (2) the participation, from the Ordovician time, of a more easterly alongshore provenance of Tonian–Stenian zircons, and (3) an increase in the relative proportion of Tonian–Stenian zircons with respect to the Ediacaran–Cryogenian population owing to the drift of the Avalonian–Cadomian ribbon continent, or the progressive burial of Ediacaran–Cryogenian rocks coeval with the denudation of older source rocks from the craton interior. Supplementary material: Tables with the analytical data and the geochronological results are available at http://www.geolsoc.org.uk/SUP18812.
Lithosphere | 2017
Daniel Pastor-Galán; Kieran F. Mulchrone; Mathijs R. Koymans; Douwe J. J. van Hinsbergen; Cor G. Langereis
Most mountain belts on Earth show some degree of curvature in plan view, from a slight bend to horseshoe shapes. Such curvatures may occur on different scales, from individual thrust sheets to entire plate boundaries. Curvature may be acquired by vertical-axis rotation during or after orogenesis, or reflect primary lateral variations in shortening directions or physiographical features. Quantifying the amount of vertical-axis rotations of plan-view curvature is therefore helpful to our understanding of orogenesis, geodynamics, and paleogeography. The orocline test assesses to what extent vertical-axis rotations have played a role in the acquisition of an orogen’s curvature. The test quantifies through linear regression the relationships between changes in structural trends and the orientations of a geologic fabric. However, the current mathematical approaches to the orocline test show potential biases. In this paper we aim to overcome such biases by developing a novel orocline test that applies total least squares (TLS) regression combined with a novel approach to bootstrapping. This bootstrap TLS orocline test can be used with all types of directional data acquired from structural geology, paleomagnetism, or sedimentology. It quantifies, for the first time, secondary curvature with confidence bands. We also provide several graphical and analytical tests to evaluate the statistical significance of the result. An open source online application implementing this method is available for use on www.paleomagnetism.org. We illustrate the use of the methodology by reanalyzing published data sets from two well-known oroclines in the Cantrabrian (northwest Iberia) and Aegean (Greece) regions.
Computers & Geosciences | 2013
Kieran F. Mulchrone; Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso
In structural geology it is often assumed that folds are cylindrical. However, most structures are conical to some degree. Due to the lack of software capable of accurately estimating the best fit cone from a set of oriented data, we developed a Mathematica application capable of (1) plotting oriented data (lines and planes) on an equal area stereonet, (2) calculating the orientation matrix, the distribution shape and intensity parameters, (3) plotting the eigenvectors and (4) estimating and plotting the best fit cone, a small circle. We present both synthetic and natural data demonstrating its robustness and accuracy calculating the best fit cone.
International Geology Review | 2018
Daniel Pastor-Galán; Ícaro Dias da Silva; Thomas Groenewegen; Wout Krijgsman
ABSTRACT The amalgamation of Pangea during the Carboniferous produced a winding mountain belt: the Variscan orogen of West Europe. In the Iberian Peninsula, this tortuous geometry is dominated by two major structures: the Cantabrian Orocline, to the north, and the Central Iberian curve (CIC) to the south. Here, we perform a detailed structural analysis of an area within the core of the CIC. This core was intensively deformed resulting in a corrugated superimposed folding pattern. We have identified three different phases of deformation that can be linked to regional Variscan deformation phases. The main collisional event produced upright to moderately inclined cylindrical folds with an associated axial planar cleavage. These folds were subsequently folded during extensional collapse, in which a second fold system with subhorizontal axes and an intense subhorizontal cleavage formed. Finally, during the formation of the Cantabrian Orocline, a third folding event refolded the two previous fold systems. This later phase formed upright open folds with fold axis trending 100° to 130°, a crenulation cleavage and brittle–ductile transcurrent conjugated shearing. Our results show that the first and last deformation phases are close to coaxial, which does not allow the CIC to be formed as a product of vertical axis rotations, i.e. an orocline. The origin of the curvature in Central Iberia, if a single process, had to be coeval or previous to the first deformation phase.
Tectonics | 2011
Gabriel Gutiérrez-Alonso; Javier Fernández-Suárez; Teresa Jeffries; Stephen T. Johnston; Daniel Pastor-Galán; J. Brendan Murphy; M. Piedad Franco; J. Carlos Gonzalo
Tectonophysics | 2013
A. Brandon Weil; Gabriel Gutiérrez-Alonso; Stephen T. Johnston; Daniel Pastor-Galán