Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Pletzer is active.

Publication


Featured researches published by Daniel Pletzer.


Journal of Bacteriology | 2016

Antibiofilm Peptides: Potential as Broad-Spectrum Agents

Daniel Pletzer; Robert E. W. Hancock

The treatment of bacterial diseases is facing twin threats, with increasing bacterial antibiotic resistance and relatively few novel compounds or strategies under development or entering the clinic. Bacteria frequently grow on surfaces as biofilm communities encased in a polymeric matrix. The biofilm mode of growth is associated with 65 to 80% of all clinical infections. It causes broad adaptive changes; biofilm bacteria are especially (10- to 1,000-fold) resistant to conventional antibiotics and to date no antimicrobials have been developed specifically to treat biofilms. Small synthetic peptides with broad-spectrum antibiofilm activity represent a novel approach to treat biofilm-related infections. Recent developments have provided evidence that these peptides can inhibit even developed biofilms, kill multiple bacterial species in biofilms (including the ESKAPE [Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species] pathogens), show strong synergy with several antibiotics, and act by targeting a universal stress response in bacteria. Thus, these peptides represent a promising alternative treatment to conventional antibiotics and work effectively in animal models of biofilm-associated infections.


Current Opinion in Microbiology | 2016

Anti-biofilm peptides as a new weapon in antimicrobial warfare.

Daniel Pletzer; Shannon R Coleman; Robert E. W. Hancock

Microorganisms growing in a biofilm state are very resilient in the face of treatment by many antimicrobial agents. Biofilm infections are a significant problem in chronic and long-term infections, including those colonizing medical devices and implants. Anti-biofilm peptides represent a very promising approach to treat biofilm-related infections and have an extraordinary ability to interfere with various stages of the biofilm growth mode. Anti-biofilm peptides possess promising broad-spectrum activity in killing both Gram-positive and Gram-negative bacteria in biofilms, show strong synergy with conventional antibiotics, and act by targeting a universal stringent stress response. Understanding downstream processes at the molecular level will help to develop and design peptides with increased activity. Anti-biofilm peptides represent a novel, exciting approach to treating recalcitrant bacterial infections.


EBioMedicine | 2016

Bacterial Abscess Formation Is Controlled by the Stringent Stress Response and Can Be Targeted Therapeutically

Sarah C. Mansour; Daniel Pletzer; César de la Fuente-Núñez; Paul Kim; Gordon Y. C. Cheung; Hwang-Soo Joo; Michael Otto; Robert E. W. Hancock

Cutaneous abscess infections are difficult to treat with current therapies and alternatives to conventional antibiotics are needed. Understanding the regulatory mechanisms that govern abscess pathology should reveal therapeutic interventions for these recalcitrant infections. Here we demonstrated that the stringent stress response employed by bacteria to cope and adapt to environmental stressors was essential for the formation of lesions, but not bacterial growth, in a methicillin resistant Staphylococcus aureus (MRSA) cutaneous abscess mouse model. To pharmacologically confirm the role of the stringent response in abscess formation, a cationic peptide that causes rapid degradation of the stringent response mediator, guanosine tetraphosphate (ppGpp), was employed. The therapeutic application of this peptide strongly inhibited lesion formation in mice infected with Gram-positive MRSA and Gram-negative Pseudomonas aeruginosa. Overall, we provide insights into the mechanisms governing abscess formation and a paradigm for treating multidrug resistant cutaneous abscesses.


Scientific Reports | 2017

Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic

Houssein Chalhoub; Daniel Pletzer; Helge Weingart; Yvonne Braun; Michael M. Tunney; J. Stuart Elborn; Hector Rodriguez-Villalobos; Patrick Plésiat; Barbara C. Kahl; Olivier Denis; Mathias Winterhalter; Paul M. Tulkens; Françoise Van Bambeke

The β-lactam antibiotic temocillin (6-α-methoxy-ticarcillin) shows stability to most extended spectrum β-lactamases, but is considered inactive against Pseudomonas aeruginosa. Mutations in the MexAB-OprM efflux system, naturally occurring in cystic fibrosis (CF) isolates, have been previously shown to reverse this intrinsic resistance. In the present study, we measured temocillin activity in a large collection (n = 333) of P. aeruginosa CF isolates. 29% of the isolates had MICs ≤ 16 mg/L (proposed clinical breakpoint for temocillin). Mutations were observed in mexA or mexB in isolates for which temocillin MIC was ≤512 mg/L (nucleotide insertions or deletions, premature termination, tandem repeat, nonstop, and missense mutations). A correlation was observed between temocillin MICs and efflux rate of N-phenyl-1-naphthylamine (MexAB-OprM fluorescent substrate) and extracellular exopolysaccharide abundance (contributing to a mucoid phenotype). OpdK or OpdF anion-specific porins expression decreased temocillin MIC by ~1 two-fold dilution only. Contrarily to the common assumption that temocillin is inactive on P. aeruginosa, we show here clinically-exploitable MICs on a non-negligible proportion of CF isolates, explained by a wide diversity of mutations in mexA and/or mexB. In a broader context, this work contributes to increase our understanding of MexAB-OprM functionality and help delineating how antibiotics interact with MexA and MexB.


Mbio | 2017

New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions

Daniel Pletzer; Sarah C. Mansour; Kelli Wuerth; Negin Rahanjam; Robert E. W. Hancock

ABSTRACT Only a few, relatively cumbersome animal models enable long-term Gram-negative bacterial infections that mimic human situations, where untreated infections can last for weeks. Here, we describe a simple murine cutaneous abscess model that enables chronic or progressive infections, depending on the subcutaneously injected bacterial strain. In this model, Pseudomonas aeruginosa cystic fibrosis epidemic isolate LESB58 caused localized high-density skin and soft tissue infections and necrotic skin lesions for up to 10 days but did not disseminate in either CD-1 or C57BL/6 mice. The model was adapted for use with four major Gram-negative nosocomial pathogens, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli. This model enabled noninvasive imaging and tracking of lux-tagged bacteria, the influx of activated neutrophils, and production of reactive oxygen-nitrogen species at the infection site. Screening antimicrobials against high-density infections showed that local but not intravenous administration of gentamicin, ciprofloxacin, and meropenem significantly but incompletely reduced bacterial counts and superficial tissue dermonecrosis. Bacterial RNA isolated from the abscess tissue revealed that Pseudomonas genes involved in iron uptake, toxin production, surface lipopolysaccharide regulation, adherence, and lipase production were highly upregulated whereas phenazine production and expression of global activator gacA were downregulated. The model was validated for studying virulence using mutants of more-virulent P. aeruginosa strain PA14. Thus, mutants defective in flagella or motility, type III secretion, or siderophore biosynthesis were noninvasive and suppressed dermal necrosis in mice, while a strain with a mutation in the bfiS gene encoding a sensor kinase showed enhanced invasiveness and mortality in mice compared to controls infected with wild-type P. aeruginosa PA14. IMPORTANCE More than two-thirds of hospital infections are chronic or high-density biofilm infections and difficult to treat due to adaptive, multidrug resistance. Unfortunately, current models of chronic infection are technically challenging and difficult to track without sacrificing animals. Here we describe a model of chronic subcutaneous infection and abscess formation by medically important nosocomial Gram-negative pathogens that is simple and can be used for tracking infections by imaging, examining pathology and immune responses, testing antimicrobial treatments suitable for high-density bacterial infections, and studying virulence. We propose that this mouse model can be a game changer for modeling hard-to-treat Gram-negative bacterial chronic and skin infections. More than two-thirds of hospital infections are chronic or high-density biofilm infections and difficult to treat due to adaptive, multidrug resistance. Unfortunately, current models of chronic infection are technically challenging and difficult to track without sacrificing animals. Here we describe a model of chronic subcutaneous infection and abscess formation by medically important nosocomial Gram-negative pathogens that is simple and can be used for tracking infections by imaging, examining pathology and immune responses, testing antimicrobial treatments suitable for high-density bacterial infections, and studying virulence. We propose that this mouse model can be a game changer for modeling hard-to-treat Gram-negative bacterial chronic and skin infections.


Frontiers in Microbiology | 2017

Synthetic Peptides to Target Stringent Response-Controlled Virulence in a Pseudomonas aeruginosa Murine Cutaneous Infection Model

Daniel Pletzer; Heidi Wolfmeier; Manjeet Bains; Robert E. W. Hancock

Microorganisms continuously monitor their surroundings and adaptively respond to environmental cues. One way to cope with various stress-related situations is through the activation of the stringent stress response pathway. In Pseudomonas aeruginosa this pathway is controlled and coordinated by the activity of the RelA and SpoT enzymes that metabolize the small nucleotide secondary messenger molecule (p)ppGpp. Intracellular ppGpp concentrations are crucial in mediating adaptive responses and virulence. Targeting this cellular stress response has recently been the focus of an alternative approach to fight antibiotic resistant bacteria. Here, we examined the role of the stringent response in the virulence of P. aeruginosa PAO1 and the Liverpool epidemic strain LESB58. A ΔrelA/ΔspoT double mutant showed decreased cytotoxicity toward human epithelial cells, exhibited reduced hemolytic activity, and caused down-regulation of the expression of the alkaline protease aprA gene in stringent response mutants grown on blood agar plates. Promoter fusions of relA or spoT to a bioluminescence reporter gene revealed that both genes were expressed during the formation of cutaneous abscesses in mice. Intriguingly, virulence was attenuated in vivo by the ΔrelA/ΔspoT double mutant, but not the relA mutant nor the ΔrelA/ΔspoT complemented with either gene. Treatment of a cutaneous P. aeruginosa PAO1 infection with anti-biofilm peptides increased animal welfare, decreased dermonecrotic lesion sizes, and reduced bacterial numbers recovered from abscesses, resembling the phenotype of the ΔrelA/ΔspoT infection. It was previously demonstrated by our lab that ppGpp could be targeted by synthetic peptides; here we demonstrated that spoT promoter activity was suppressed during cutaneous abscess formation by treatment with peptides DJK-5 and 1018, and that a peptide-treated relA complemented stringent response double mutant strain exhibited reduced peptide susceptibility. Overall these data strongly indicated that synthetic peptides target the P. aeruginosa stringent response in vivo and thus offer a promising novel therapeutic approach.


Emerging Topics in Life Sciences | 2017

Alternative strategies for the study and treatment of clinical bacterial biofilms

Corrie R. Belanger; Sarah C. Mansour; Daniel Pletzer; Robert E. W. Hancock

Biofilms represent an adaptive lifestyle where microbes grow as structured aggregates in many different environments, e.g. on body surfaces and medical devices. They are a profound threat in medical (and industrial) settings and cause two-thirds of all infections. Biofilm bacteria are especially recalcitrant to common antibiotic treatments, demonstrating adaptive multidrug resistance. For this reason, novel methods to eradicate or prevent biofilm infections are greatly needed. Recent advances have been made in exploring alternative strategies that affect biofilm lifestyle, inhibit biofilm formation, degrade biofilm components and/or cause dispersal. As such, naturally derived compounds, molecules that interfere with bacterial signaling systems, anti-biofilm peptides and phages show great promise. Their implementation as either stand-alone drugs or complementary therapies has the potential to eradicate resilient biofilm infections. Additionally, altering the surface properties of indwelling medical devices through bioengineering approaches has been examined as a method for preventing biofilm formation. There is also a need for improving current biofilm detection methods since in vitro methods often do not accurately measure live bacteria in biofilms or mimic in vivo conditions. We propose that the design and development of novel compounds will be enabled by the improvement and use of appropriate in vitro and in vivo models.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2016

Swarming motility is modulated by expression of the putative xenosiderophore transporter SppR-SppABCD in Pseudomonas aeruginosa PA14

Daniel Pletzer; Yvonne Braun; Helge Weingart

In the present study, we characterised the putative peptide ABC transporter SppABCD, which is co-transcribed with the TonB-dependent receptor SppR in Pseudomonas aeruginosa PA14. However, our data show that this transporter complex is not involved in the uptake of peptides. The fact that the TonB-dependent receptor SppR is regulated by an iron starvation ECF sigma factor suggested that this transporter is probably involved in the uptake of xenosiderophores. Therefore, we screened culture supernatants of 23 siderophore-producing bacteria for their ability to induce the expression of the SppR-regulating ECF sigma factor. However, none of them had an effect on the expression of this ECF sigma factor. Since the spp operon is not expressed under standard laboratory conditions, we overexpressed it from plasmids in PA14, which led to an impairment of its swarming motility on semisolid agar. Since we excluded the possibility that the uptake of a culture medium component was responsible for the observed phenotype, we hypothesize that the Spp transport system is involved in the uptake of a compound from the periplasmic space or a compound secreted by P. aeruginosa. Furthermore, we found that rhamnolipid synthesis was decreased while biofilm and exopolysaccharide synthesis was slightly increased upon overexpression of the spp operon. Moreover, we observed an impact of spp overexpression on regulation of genes involved in siderophore and phenazine biosynthesis.


PLOS Pathogens | 2018

Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens

Daniel Pletzer; Sarah C. Mansour; Robert E. W. Hancock

With the antibiotic development pipeline running dry, many fear that we might soon run out of treatment options. High-density infections are particularly difficult to treat due to their adaptive multidrug-resistance and currently there are no therapies that adequately address this important issue. Here, a large-scale in vivo study was performed to enhance the activity of antibiotics to treat high-density infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria. It was shown that synthetic peptides can be used in conjunction with the antibiotics ciprofloxacin, meropenem, erythromycin, gentamicin, and vancomycin to improve the treatment outcome of murine cutaneous abscesses caused by clinical hard-to-treat pathogens including all ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae) pathogens and Escherichia coli. Promisingly, combination treatment often showed synergistic effects that significantly reduced abscess sizes and/or improved clearance of bacterial isolates from the infection site, regardless of the antibiotic mode of action. In vitro data suggest that the mechanisms of peptide action in vivo include enhancement of antibiotic penetration and potential disruption of the stringent stress response.


Archive | 2018

Impact of Host Defense Peptides on Chronic Wounds and Infections

Evan F. Haney; Daniel Pletzer; Robert E. W. Hancock

Chronic wounds are a growing clinical concern worldwide with only a few treatment options available to address the fundamental causes of non-healing wounds. There is increasing evidence that the colonization of chronic wounds by bacteria growing within biofilms complicates treatment with conventional antibiotics and prevents proper wound healing. Compounding the issue is a relative lack of appropriate animal models that accurately capture the etiology and clinical features of chronic wounds. In the present work, we outline the role of natural host defense peptides (HDPs) on the wound healing process and highlight the potential of synthetic HDP derivatives as novel therapeutic molecules to treat long-lasting wounds. In particular, we will summarize many of the animal models available to study chronic wound infections and discuss recent results that describe the efficacy of synthetic HDPs and their ability to promote wound closure in vivo. We propose that novel synthetic HDPs that are optimized for both anti-biofilm and wound healing properties could 1 day provide additional support to help treat chronic wounds and improve patient welfare.

Collaboration


Dive into the Daniel Pletzer's collaboration.

Top Co-Authors

Avatar

Robert E. W. Hancock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sarah C. Mansour

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Heidi Wolfmeier

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

D. Scott Merrell

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Ian H. Windham

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeannette M. Whitmire

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephanie L. Servetas

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Helge Weingart

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Yvonne Braun

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Corrie R. Belanger

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge