Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dániel Priksz is active.

Publication


Featured researches published by Dániel Priksz.


International Journal of Molecular Sciences | 2013

Adverse Impact of Diet-Induced Hypercholesterolemia on Cardiovascular Tissue Homeostasis in a Rabbit Model: Time-Dependent Changes in Cardiac Parameters

Attila Kertész; Mariann Bombicz; Dániel Priksz; József Balla; György Balla; Rudolf Gesztelyi; Balazs Varga; David D. Haines; Arpad Tosaki; Bela Juhasz

The present study evaluates a hypothesis that diet-related hypercholesterolemia increases oxidative stress-related burden to cardiovascular tissue, resulting in progressively increased mortality, along with deterioration of electrophysiological and enzymatic function in rabbit myocardium. New Zealand white rabbits were divided into four groups, defined as follows: GROUP I, cholesterol-free rabbit chow for 12 weeks; GROUP II, cholesterol-free chow, 40 weeks; GROUP III, chow supplemented with 2% cholesterol, 12 weeks; GROUP IV, chow supplemented with 2% cholesterol, 40 weeks. At the 12 and 40 weeks time points, animals in each of the aforementioned cohorts were subjected to echocardiographic measurements, followed by sacrifice. Significant deterioration in major outcome variables measured in the present study were observed only in animals maintained for 40 weeks on 2% cholesterol-supplemented chow, with much lesser adverse effects noted in animals fed high cholesterol diets for only 12 weeks. It was observed that rabbits receiving high cholesterol diets for 40 weeks exhibited significantly increased mortality, worsened ejection fraction and general deterioration of cardiac functions, along with increased atherosclerotic plaque formation and infarct size. Additionally, myocardium of GROUP IV animals was observed to contain lower levels of heme oxygenase-1 (HO-1) and cytochrome c oxidase III (COX III) protein relative to the controls.


Molecules | 2016

Efficacy of Pre- and Post-Treatment by Topical Formulations Containing Dissolved and Suspended Silybum marianum against UVB-Induced Oxidative Stress in Guinea Pig and on HaCaT Keratinocytes

Pálma Fehér; Zoltán Ujhelyi; Judit Váradi; Ferenc Fenyvesi; Eszter Róka; Bela Juhasz; Balazs Varga; Mariann Bombicz; Dániel Priksz; Ildikó Bácskay; Miklós Vecsernyés

Plants with high amounts of antioxidants may be a promising therapy for preventing and curing UV-induced oxidative skin damage. The objective of this study was to verify the efficacy of topical formulations containing dissolved and suspended Silybum marianum extract against UVB-induced oxidative stress in guinea pig and HaCaT keratinocytes. Herbal extract was dissolved in Transcutol HP (TC) and sucrose-esters were incorporated as penetration enhancers in creams. Biocompatibility of compositions was tested on HeLa cells and HaCaT keratinocytes as in vitro models. Transepidermal water loss (TEWL) tests were performed to prove the safety of formulations in vivo. Drug release of different compositions was assessed by Franz diffusion methods. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (MDA) activities were evaluated before and after UVB irradiation in a guinea pig model and HaCaT cells. Heme oxygenase-1 (HO-1) enzyme activity was measured in the epidermis of guinea pigs treated by different creams before and after UVB irradiation. Treatment with compositions containing silymarin powder (SM) dissolved in TC and sucrose stearate SP 50 or SP 70 resulted in increased activities of all reactive oxygen species (ROS) eliminating enzymes in the case of pre- and post-treatment as well. Reduction in the levels of lipid peroxidation end products was also detected after treatment with these two compositions. Post-treatment was more effective as the increase of the activity of antioxidants was higher. Lower HO-1 enzyme levels were measured in the case of pre- and post-treatment groups compared to control groups. Therefore, this study demonstrates the effectiveness of topical formulations containing silymarin in inhibiting UVB irradiation induced oxidative stress of the skin.


International Journal of Molecular Sciences | 2016

Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits

Mariann Bombicz; Dániel Priksz; Balazs Varga; Rudolf Gesztelyi; Attila Kertész; Péter Lengyel; Péter Balogh; Dezső Csupor; Judit Hohmann; Harjit Pal Bhattoa; David D. Haines; Bela Juhasz

The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats.

Árpád Kovács; Gábor A. Fülöp; Andrea Balla Kovács; Tamás Csípő; Beáta Bódi; Dániel Priksz; Bela Juhasz; Lívia Beke; Zoltán Hendrik; Gábor Méhes; Henk Granzier; István Édes; Miklós Fagyas; Zoltán Papp; Judit Barta; Attila Tóth

Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titins PEVK element, contributing to diastolic dysfunction.


Journal of Cardiovascular Pharmacology | 2017

Alpha–melanocyte-stimulating Hormone Induces Vasodilation and Exerts Cardioprotection Through the Heme-oxygenase Pathway in Rat Hearts

Miklós Vecsernyés; Miklos Szokol; Mariann Bombicz; Dániel Priksz; Rudolf Gesztelyi; Gábor A. Fülöp; Balazs Varga; Bela Juhasz; David D. Haines; Arpad Tosaki

Abstract: Alpha–melanocyte-stimulating hormone (&agr;-MSH) is a protein with known capacity for protection against cardiovascular ischemia–reperfusion (I/R) injury. This investigation evaluates the capacity of &agr;-MSH to mitigate I/R effects in an isolated working rat heart model and determine the dependency of these alterations on the activity of heme oxygenase-1 (HO-1, hsp-32), a heat shock protein that functions as a major antioxidant defense molecule. Healthy male Sprague Dawley rats were used for all experiments. After treatment with selected doses of &agr;-MSH, echocardiographic examinations were performed on live, anesthetized animals. Hearts were harvested from anesthetized rats pretreated with &agr;-MSH and/or the HO-1 inhibitor SnPP, followed by cardiac function assessment on isolated working hearts, which were prepared using the Langendorff protocol. Induction of global ischemia was performed, followed by during reperfusion assessment of cardiac functions. Determination of incidence of cardiac arrhythmias was made by electrocardiogram. Major outcomes include echocardiographic data, suggesting that &agr;-MSH has mild effects on systolic parameters, along with potent antiarrhythmic effects. Of particular significance was the specificity of dilatative effects on coronary vasculature, and similar outcomes of aortic ring experiments, which potentially allow different doses of the compound to be used to selectively target various portions of the vasculature for dilation.


International Journal of Molecular Sciences | 2017

A Novel Therapeutic Approach in the Treatment of Pulmonary Arterial Hypertension: Allium ursinum Liophylisate Alleviates Symptoms Comparably to Sildenafil

Mariann Bombicz; Dániel Priksz; Balazs Varga; Andrea Kurucz; Attila Kertész; Ákos Takács; Anikó Pósa; Rita Kiss; Zoltán Szilvássy; Bela Juhasz

Right-sided heart failure—often caused by elevated pulmonary arterial pressure—is a chronic and progressive condition with particularly high mortality rates. Recent studies and our current findings suggest that components of Wild garlic (Allium ursinum, AU) may play a role in reducing blood pressure, inhibiting angiotensin-converting enzyme (ACE), as well as improving right ventricle function in rabbit models with heart failure. We hypothesize that AU may mitigate cardiovascular damage caused by pulmonary arterial hypertension (PAH) and has value in the supplementary treatment of the complications of the disease. In this present investigation, PAH was induced by a single dose of monocrotaline (MCT) injection in Sprague-Dawley rats, and animals were divided into 4 treatment groups as follows: I. healthy control animals (Control group); II. pulmonary hypertensive rats (PAH group); III. pulmonary hypertensive rats + daily sildenafil treatment (Sildenafil group); and IV. pulmonary hypertensive rats + Wild garlic liophylisate-enriched chow (WGLL group), for 8 weeks. Echocardiographic measurements were obtained on the 0 and 8 weeks with fundamental and Doppler imaging. Isolated working heart method was used to determinate cardiac functions ex vivo after thoracotomy on the 8th week. Histological analyses were carried out on excised lung samples, and Western blot technique was used to determine Phosphodiesterase type 5 enzyme (PDE5) expression in both myocardial and pulmonary tissues. Our data demonstrate that right ventricle function measured by echocardiography was deteriorated in PAH animals compared to controls, which was counteracted by AU treatment. Isolated working heart measurements showed elevated aortic flow in WGLL group compared to PAH animals. Histological analysis revealed dramatic increase in medial wall thickness of pulmonary arteries harvested from PAH animals, but arteries of animals in sildenafil- and WGLL-treated groups showed physiological status. Our results suggest that bioactive compounds in Allium ursinum could have beneficial effects in pulmonary hypertension.


International Journal of Molecular Sciences | 2018

Fenugreek (Trigonella Foenum-Graecum) Seed Flour and Diosgenin Preserve Endothelium-Dependent Arterial Relaxation in a Rat Model of Early-Stage Metabolic Syndrome

Katalin Szabó; Rudolf Gesztelyi; Nóra Lampé; Rita Kiss; Judit Remenyik; Georgina Pesti-Asbóth; Dániel Priksz; Zoltán Szilvássy; Bela Juhasz

Fenugreek is a common herb possessing several bioactive components including diosgenin. Here, dietary fenugreek seed flour and diosgenin were evaluated on a model of endothelium-dependent vasorelaxation by abdominal aortas isolated from rats receiving high-fat, high-sugar diet (HFHSD). 60 male Wistar rats were randomized into six groups: (i) negative control getting conventional rat feed regimen; (ii) positive control receiving HFHSD; (iii) a test group fed 2 g/kg bw/day fenugreek seed flour (containing 10 mg/kg bw/day diosgenin) + HFHSD; (iv) three test groups fed 1, 10 and 50 mg/kg bw/day diosgenin + HFHSD. Alimentary treatments were carried out for six weeks. The abdominal aortas were isolated, and 2 mm wide rings were sectioned off and mounted at a resting tension of 10 mN in organ baths containing Krebs solution (36 °C) exposed to 95% O2 and 5% CO2. After 60-min incubation, a norepinephrine concentration-response (E/c) curve was generated to determine their half-maximal effective concentration (EC50) value. After 60-min wash-out, a pre-contraction with norepinephrine EC50 was made, followed by an acetylcholine E/c curve. Plasma glutathione levels, glutathione-handling enzyme activities and blood antioxidant capacities were also determined. HFHSD significantly decreased the dilatory response to acetylcholine and increased plasma glutathione levels and these effects were significantly reversed by fenugreek seed flour, 10 and 50 mg/kg bw/day diosgenin. Both fenugreek and diosgenin treatments prevent HFHSD-induced endothelial dysfunction and redox changes. As fenugreek treatment was more effective at lower acetylcholine concentrations than diosgenin treatments, components of fenugreek other than diosgenin may contribute to the beneficial effects of dietary fenugreek seed flour.


BioMed Research International | 2018

Heme Oxygenase-1 Activity as a Correlate to Exercise-Mediated Amelioration of Cognitive Decline and Neuropathological Alterations in an Aging Rat Model of Dementia

Andrea Kurucz; Mariann Bombicz; Rita Kiss; Dániel Priksz; Balazs Varga; Tibor Hortobágyi; György Trencsényi; Renáta Szabó; Anikó Pósa; Rudolf Gesztelyi; Zoltán Szilvássy; Bela Juhasz

Alzheimers disease (AD) is a neurodegenerative disorder with cognitive impairment. Physical exercise has long been proven to be beneficial in the disorder. The present study was designed to examine the effect of voluntary exercise on spatial memory, imaging, and pathological abnormalities. Particular focus has been given to the role of heme oxygenase-1 (HO-1)—an important cellular cytoprotectant in preserving mental acuity—using an aging rat model of dementia. Male and female Wistar rats were segregated into six groups—namely, (i) aged sedentary (control) females (ASF, n = 8); (ii) aged sedentary (control) males (ASM, n = 8); (iii) aged running females (ARF, n = 8); (iv) aged running males (ARM, n = 8); (v) young control females (YCF, n = 8); and (vi) young control males (YCM, n = 8). Rats in the ARF and ARM groups had free access to a standardized inbuilt running wheel during the 3-month evaluation period. Spatial memory was investigated using the Morris Water Test, imaging and pathological alterations were assessed using positron emission tomography (PET) imaging and histopathological examinations (H&E, Congo red staining), respectively, and HO-1 enzyme activity assays were also conducted. The outcomes suggest that voluntary physical exercise mitigates impaired spatial memory and neuropathological changes exhibited by the aging sedentary group, via elevated HO-1 activity, contributing to the antioxidant capacity in the aging brain.


Molecules | 2017

Protective Effect of Prunus Cerasus (Sour Cherry) Seed Extract on the Recovery of Ischemia/Reperfusion-Induced Retinal Damage in Zucker Diabetic Fatty Rat

Balazs Varga; Dániel Priksz; Nóra Lampé; Mariann Bombicz; Andrea Kurucz; Adrienn Szabó; Anikó Pósa; Renáta Szabó; Adam Kemeny-Beke; Judit Remenyik; Rudolf Gesztelyi; Bela Juhasz

Among diabetes patients, ophthalmological complications are very frequent. High blood glucose and (consequential) ischemia-reperfusion (I/R) injury contribute significantly to the severity of retinopathies. Diabetic retinopathy is among the leading causes of blindness. Our study demonstrates the effect of sour cherry seed extract (SCSE) on blood glucose and function of the retina with electroretinography (ERG) in a diabetic setting with or without ischemia-reperfusion (I/R) injury in Zucker Diabetic Fatty (ZDF) rats. Our results prove that the SCSE has a retinoprotective effect in diabetic rats: according to ERG measurements, SCSE treatment mitigated the retinal function-damaging effect of diabetes, and proved to be protective in the diabetic eye against ischemia-reperfusion injuries of the retina. Outcomes suggest that the protective effects of SCSE may occur through several pathways, including HO-1 dependent mechanisms. The observation that SCSE treatment decreases blood glucose is also novel. These findings offer the possibility for development of novel therapeutic strategies utilizing this emerging functional food, in particular in the prevention of conditions resulting from high blood glucose or I/R injury, such as deterioration of retinal microcirculation.


International Journal of Molecular Sciences | 2018

Insulin-sensitizer effects of fenugreek seeds in parallel with changes in plasma MCH levels in healthy volunteers

Rita Kiss; Katalin Szabó; Rudolf Gesztelyi; Sándor Somodi; Peter Kovacs; Zoltán Szabó; József Németh; Dániel Priksz; Andrea Kurucz; Bela Juhasz; Zoltán Szilvássy

In developed, developing and low-income countries alike, type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases, the severity of which is substantially a consequence of multiple organ complications that occur due to long-term progression of the disease before diagnosis and treatment. Despite enormous investment into the characterization of the disease, its long-term management remains problematic, with those afflicted enduring significant degradation in quality-of-life. Current research efforts into the etiology and pathogenesis of T2DM, are focused on defining aberrations in cellular physiology that result in development of insulin resistance and strategies for increasing insulin sensitivity, along with downstream effects on T2DM pathogenesis. Ongoing use of plant-derived naturally occurring materials to delay the onset of the disease or alleviate symptoms is viewed by clinicians as particularly desirable due to well-established efficacy and minimal toxicity of such preparations, along with generally lower per-patient costs, in comparison to many modern pharmaceuticals. A particularly attractive candidate in this respect, is fenugreek, a plant that has been used as a flavouring in human diet through recorded history. The present study assessed the insulin-sensitizing effect of fenugreek seeds in a cohort of human volunteers, and tested a hypothesis that melanin-concentrating hormone (MCH) acts as a critical determinant of this effect. A test of the hypothesis was undertaken using a hyperinsulinemic euglycemic glucose clamp approach to assess insulin sensitivity in response to oral administration of a fenugreek seed preparation to healthy subjects. Outcomes of these evaluations demonstrated significant improvement in glucose tolerance, especially in patients with impaired glucose responses. Outcome data further suggested that fenugreek seed intake-mediated improvement in insulin sensitivity correlated with reduction in MCH levels.

Collaboration


Dive into the Dániel Priksz's collaboration.

Top Co-Authors

Avatar

Bela Juhasz

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Kiss

University of Debrecen

View shared research outputs
Researchain Logo
Decentralizing Knowledge