Daniel Procissi
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Procissi.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ciprian Catana; Daniel Procissi; Yibao Wu; Martin S. Judenhofer; Jinyi Qi; Bernd J. Pichler; Russell E. Jacobs; Simon R. Cherry
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
Pain | 2014
Pei Ching Chang; Sarah L. Pollema-Mays; Maria Virginia Centeno; Daniel Procissi; Massimos Contini; Alex T. Baria; Macro Martina; A. V. Apkarian
Summary In a rodent neuropathic pain model, combined fMRI and PCR assessment revealed reorganization of nucleus accumbens, while interruption of accumbens activity diminished neuropathic pain. ABSTRACT Despite recent evidence implicating the nucleus accumbens (NAc) as causally involved in the transition to chronic pain in humans, underlying mechanisms of this involvement remain entirely unknown. Here we elucidate mechanisms of NAc reorganizational properties (longitudinally and cross‐sectionally), in an animal model of neuropathic pain (spared nerve injury [SNI]). We observed interrelated changes: (1) In resting‐state functional magnetic resonance imaging (fMRI), functional connectivity of the NAc to dorsal striatum and cortex was reduced 28 days (but not 5 days) after SNI; (2) Contralateral to SNI injury, gene expression of NAc dopamine 1A, 2, and &kgr;‐opioid receptors decreased 28 days after SNI; (3) In SNI (but not sham), covariance of gene expression was upregulated at 5 days and settled to a new state at 28 days; and (4) NAc functional connectivity correlated with dopamine receptor gene expression and with tactile allodynia. Moreover, interruption of NAc activity (via lidocaine infusion) reversibly alleviated neuropathic pain in SNI animals. Together, these results demonstrate macroscopic (fMRI) and molecular reorganization of NAc and indicate that NAc neuronal activity is necessary for full expression of neuropathic pain‐like behavior.
Clinical Cancer Research | 2007
Daniel Procissi; Filip G. Claus; Paul Burgman; Jacek Koziorowski; J. Donald Chapman; Sunitha B. Thakur; Cornelia Matei; C. Clifton Ling; Jason A. Koutcher
Purpose: 2-Nitro-α-[(2,2,2-trifluoroethoxy)methyl]-imidazole-1-ethanol (TF-MISO) was investigated as a potential noninvasive marker of tissue oxygen levels in tumors using 19F magnetic resonance spectroscopy (MRS) and 19F chemical shift imaging. Experimental Designs:In vitro data were obtained using high-performance liquid chromatography on tumor cells incubated under varying oxygen conditions to determine the oxygen-binding characteristics. In vivo data were obtained using a well-characterized hypoxic murine breast tumor (MCa), in addition to studies on a rat prostate tumor model (R3327-AT) implanted in nude mice. Detection of intratumor 19F signal from TF-MISO was done using MRS for up to 10 h following a 75 mg/kg i.v. injection. Localized distribution of the compound in the implanted MCa tumor has been imaged using slice-selective two-dimensional chemical shift imaging 6 h after injection. Results: The in vitro results showed that TF-MISO preferentially accumulates in cells incubated under anoxic conditions. The in vivo 19F MR spectral features (line width and chemical shift) were recorded as a function of time after injection, and the results indicate that the fluorine atoms are indeed sensitive to changes in the local environment while still providing a detectable MR signal. Ex vivo spectra were collected and established the visibility of the 19F signal under conditions of maximum hypoxia. Late time point (>6 h) tumor tissue concentrations, as obtained from 19F MRS, suggest that TF-MISO is reduced and retained in hypoxic tumor. The feasibility of obtaining TF-MISO tumor distribution maps in a reasonable time frame was established. Conclusions: Based on the results presented herein, it is suggested that TF-MISO has the potential to be a valid magnetic resonance hypoxia imaging reporter for both preclinical hypoxia studies and hypoxia-directed clinical therapy.
International Journal of Nanomedicine | 2013
Yang Guo; Zhuoli Zhang; Dong Hyun Kim; Weiguo Li; Jodi Nicolai; Daniel Procissi; Yi Huan; Guohong Han; Reed A. Omary; Andrew C. Larson
Purpose Photothermal ablation is a minimally invasive approach, which typically involves delivery of photothermal sensitizers to targeted tissues. The purpose of our study was to demonstrate that gold nanoparticles are phagocytosed by pancreatic cancer cells, thus permitting magnetic resonance imaging (MRI) of sensitizer delivery and photothermal ablation. Patients and methods Iron-oxide core/gold-shell nanoparticles (GoldMag®, 30 nm diameter; Xi’an GoldMag Biotechnology Co, Xi’an, People’s Republic of China) were used. In a 96-well plate, 3 × 104 PANC-1 (human pancreatic cancer cell line) cells were placed. GoldMag (0, 25, or 50 μg/mL) was added to each well and 24 hours allowed for cellular uptake. Samples were then divided into two groups: one treated with photothermal ablation (7.9 W/cm2) for 5 minutes, the other not treated. Photothermal ablation was performed using laser system (BWF5; B&W Tek, Inc, Newark, DE, USA). Intraprocedural temperature changes were measured using a fiber optic temperature probe (FTP-LN2; Photon Control Inc, Burnaby, BC, Canada). After 24 hours, the remaining number of viable cells was counted using trypan blue staining; cell proliferation percentage was calculated based on the total number of viable cells after treatment compared with control. MRI of GoldMag uptake was performed using a 7.0T ClinScan system (Bruker BioSpin, Ettlingen, Germany). Results Temperature curves demonstrated that with increased GoldMag uptake, laser irradiation produced higher temperature elevations in the corresponding samples; temperature elevations of 12.89°C, 35.16°C, and 79.51°C were achieved for 0, 25, and 50 μg/mL GoldMag. Without photothermal ablation, the cell proliferation percentage changed from 100% to 71.3% and 47.0% for cells treated with 25 and 50 μg/mL GoldMag. Photothermal ablation of PANC-1 cells demonstrated an effective treatment response, specifically a reduction to only 61%, 21.9%, and 2.3% cell proliferation for cells treated with 0, 25, and 50 μg/mL GoldMag. MRI was able to visualize GoldMag uptake within PANC-1 cells. Conclusion Our findings suggest that photothermal ablation may be effective in the treatment of pancreatic cancer. GoldMag nanoparticles could serve as photothermal sensitizers, and MRI is feasible to quantify delivery.
Advanced Healthcare Materials | 2014
Dong Hyun Kim; Yang Guo; Zhuoli Zhang; Daniel Procissi; Jodi Nicolai; Reed A. Omary; Andrew C. Larson
To improve the efficacy of gemcitabine (GEM) for the treatment of advanced pancreatic cancer via local hyperthermia potentiated via a multi-functional nanoplatform permitting both in vivo heating and drug delivery is the goal of this study. Here, a chemohyperthermia approach to synergistically achieve high intra-tumoral drug concentrations, while permitting concurrent hyperthermia for more effective tumor cell kill and growth inhibition, is proposed. Drug delivery and hyperthermia are achieved using a hydroxypropyl cellulose (HPC)-grafted porous magnetic drug carrier that is MRI visible to permit in vivo visualization of the biodistribution. These synthesized magnetic drug carriers produce strong T2 -weighted image contrast and permit efficient heating using low-magnetic-field intensities. The thermomechanical response of HPC permits triggered GEM release confirmed during in vitro drug release studies. During in vitro studies, pancreatic cancer cell growth is significantly inhibited (≈82% reduction) with chemohyperthermia compared to chemotherapy or hyperthermia alone. Using PANC-1 xenografts in nude mice, the delivery of injected GEM-loaded magnetic carriers (GEM-magnetic carriers) is visualized with both MRI and fluorescent imaging techniques. Chemohyperthermia with intra-tumoral injections of GEM-magnetic carriers (followed by heating) results in significant increases in apoptotic cell death compared to tumors treated with GEM-magnetic carriers injections alone. Chemohyperthermia with GEM-magnetic carriers offers the potential to significantly improve the therapeutic efficacy of GEM for the treatment of pancreatic cancer. In vivo delivery confirmation with non-invasive imaging techniques could permit patient-specific adjustments therapeutic regimens for improve longitudinal outcomes.
ACS Nano | 2013
S. Mouli; Patrick D. Tyler; Joseph L. McDevitt; A.C. Eifler; Yang Guo; Jodi Nicolai; Robert J. Lewandowski; Weiguo Li; Daniel Procissi; Robert K. Ryu; Y. Andrew Wang; Riad Salem; Andrew C. Larson; Reed A. Omary
Nanoparticles (NP) have emerged as a novel class of therapeutic agents that overcome many of the limitations of current cancer chemotherapeutics. However, a major challenge to many current NP platforms is unfavorable biodistribution, and limited tumor uptake, upon systemic delivery. Delivery, therefore, remains a critical barrier to widespread clinical adoption of NP therapeutics. To overcome these limitations, we have adapted the techniques of image-guided local drug delivery to develop nanoablation and nanoembolization. Nanoablation is a tumor ablative strategy that employs image-guided placement of electrodes into tumor tissue to electroporate tumor cells, resulting in a rapid influx of NPs that is not dependent on cellular uptake machinery or stage of the cell cycle. Nanoembolization involves the image-guided delivery of NPs and embolic agents directly into the blood supply of tumors. We describe the design and testing of our innovative local delivery strategies using doxorubicin-functionalized superparamagnetic iron oxide nanoparticles (DOX-SPIOs) in cell culture, and the N1S1 hepatoma and VX2 tumor models, imaged by high resolution 7T MRI. We demonstrate that local delivery techniques result in significantly increased intratumoral DOX-SPIO uptake, with limited off-target delivery in tumor-bearing animal models. The techniques described are versatile enough to be extended to any NP platform, targeting any solid organ malignancy that can be accessed via imaging guidance.
The Journal of Nuclear Medicine | 2012
Thomas S. C. Ng; James R. Bading; Ryan Park; Hargun Sohi; Daniel Procissi; David Colcher; Peter S. Conti; Simon R. Cherry; Andrew Raubitschek; Russell E. Jacobs
Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods: Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following 64Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results: The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both 18F-FDG and a 64Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. Conclusion: The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Zhuoli Zhang; Weiguo Li; Daniel Procissi; Patrick D. Tyler; Reed A. Omary; Andrew C. Larson
AIM NanoKnife(®) (Angiodynamics, Inc., NY, USA) or irreversible electroporation (IRE) is a newly available ablation technique to induce the formation of nanoscale pores within the cell membrane in targeted tissues. The purpose of this study was to elucidate morphological alterations following 30 min of IRE ablation in a mouse model of pancreatic cancer. MATERIALS & METHODS Immunohistochemistry markers were compared with diffusion-weighted MRI apparent diffusion coefficient measurements before and after IRE ablation. RESULTS Immunohistochemistry apoptosis index measurements were significantly higher in IRE-treated tumors than in controls. Rapid tissue alterations after 30 min of IRE ablation procedures (structural and morphological alterations along with significantly elevated apoptosis markers) were consistently observed and well correlated to apparent diffusion coefficient measurements. DISCUSSION This imaging assay offers the potential to serve as an in vivo biomarker for noninvasive detection of tumor response following IRE ablation.
Small | 2011
Alexander Kieger; Michael J. Wiester; Daniel Procissi; Todd B. Parrish; Chad A. Mirkin; C. Shad Thaxton
therapeutic delivery, [ 2 ] imaging, [ 3 ] and applications that combine modalities (i.e., theranostic). [ 4 ] In addition to tracking the location of nanoparticles, [ 5 ] imaging modalities also can be used to detect specifi c molecular interactions within cells by way of nanoparticle-enabled “off–on” switches. [ 6 ] Nucleicacid-functionalized gold nanoparticles (DNA or RNA AuNPs, structures where nucleic acids are covalently attached to gold nanoparticles) [ 7 ] are a promising new gene regulation platform. In addition to exhibiting excellent cell transfection capabilities (over 50 different cell lines), [ 7e ] they can be combined with imaging agents (e.g., gadolinium), allowing researchers to track their location using magnetic resonance imaging (MRI). [ 8 ] AuNPs are also effi cient distancedependent quenchers of molecular fl uorescence, [ 9 ] and have been used to develop a new class of nucleic-acid and smallmolecule probes, which release fl uorescent signaling agents
NeuroImage | 2011
Teodora Adriana Perles-Barbacaru; Daniel Procissi; Andrey V. Demyanenko; F. Scott Hall; George R. Uhl; Russell E. Jacobs
The use of pharmacologic MRI (phMRI) in mouse models of brain disorders allows noninvasive in vivo assessment of drug-modulated local cerebral blood volume changes (ΔCBV) as one correlate of neuronal and neurovascular activities. In this report, we employed CBV-weighted phMRI to compare cocaine-modulated neuronal activity in dopamine transporter (DAT) knockout (KO) and wild-type mice. Cocaine acts to block the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT) that clear their respective neurotransmitters from the synapses, helping to terminate cognate neurotransmission. Cocaine consistently reduced CBV, with a similar pattern of regional ΔCBV in brain structures involved in mediating reward in both DAT genotypes. The largest effects (-20% to -30% ΔCBV) were seen in the nucleus accumbens and several cortical regions. Decreasing response amplitudes to cocaine were noted in more posterior components of the cortico-mesolimbic circuit. DAT KO mice had significantly attenuated ΔCBV amplitudes, shortened times to peak response, and reduced response duration in most regions. This study demonstrates that DAT knockout does not abolish the phMRI responses to cocaine, suggesting that adaptations to loss of DAT and/or retained cocaine activity in other monoamine neurotransmitter systems underlie these responses in DAT KO mice.