Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Bogema is active.

Publication


Featured researches published by Daniel R. Bogema.


Mbio | 2012

Characterization of Cleavage Events in the Multifunctional Cilium Adhesin Mhp684 (P146) Reveals a Mechanism by Which Mycoplasma hyopneumoniae Regulates Surface Topography

Daniel R. Bogema; Ania T. Deutscher; Lauren K. Woolley; Lisa M. Seymour; Benjamin B. A. Raymond; Jessica L. Tacchi; Matthew P. Padula; Nicholas E. Dixon; F. Chris Minion; Cheryl Jenkins; Mark J. Walker; Steven P. Djordjevic

ABSTRACT Mycoplasma hyopneumoniae causes enormous economic losses to swine production worldwide by colonizing the ciliated epithelium in the porcine respiratory tract, resulting in widespread damage to the mucociliary escalator, prolonged inflammation, reduced weight gain, and secondary infections. Protein Mhp684 (P146) comprises 1,317 amino acids, and while the N-terminal 400 residues display significant sequence identity to the archetype cilium adhesin P97, the remainder of the molecule is novel and displays unusual motifs. Proteome analysis shows that P146 preprotein is endogenously cleaved into three major fragments identified here as P50P146, P40P146, and P85P146 that reside on the cell surface. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) identified a semitryptic peptide that delineated a major cleavage site in Mhp684. Cleavage occurred at the phenylalanine residue within sequence 672ATEF↓QQ677, consistent with a cleavage motif resembling S/T-X-F↓X-D/E recently identified in Mhp683 and other P97/P102 family members. Biotinylated surface proteins recovered by avidin chromatography and separated by two-dimensional gel electrophoresis (2-D GE) showed that more-extensive endoproteolytic cleavage of P146 occurs. Recombinant fragments F1P146-F3P146 that mimic P50P146, P40P146, and P85P146 were constructed and shown to bind porcine epithelial cilia and biotinylated heparin with physiologically relevant affinity. Recombinant versions of F3P146 generated from M. hyopneumoniae strain J and 232 sequences strongly bind porcine plasminogen, and the removal of their respective C-terminal lysine and arginine residues significantly reduces this interaction. These data reveal that P146 is an extensively processed, multifunctional adhesin of M. hyopneumoniae. Extensive cleavage coupled with variable cleavage efficiency provides a mechanism by which M. hyopneumoniae regulates protein topography. IMPORTANCE Vaccines used to control Mycoplasma hyopneumoniae infection provide only partial protection. Proteins of the P97/P102 families are highly expressed, functionally redundant molecules that are substrates of endoproteases that generate multifunctional adhesin fragments on the cell surface. We show that P146 displays a chimeric structure consisting of an N terminus, which shares sequence identity with P97, and novel central and C-terminal regions. P146 is endoproteolytically processed at multiple sites, generating at least nine fragments on the surface of M. hyopneumoniae. Dominant cleavage events occurred at S/T-X-F↓X-D/E-like sites generating P50P146, P40P146, and P85P146. Recombinant proteins designed to mimic the major cleavage fragments bind porcine cilia, heparin, and plasminogen. P146 undergoes endoproteolytic processing events at multiple sites and with differential processing efficiency, generating combinatorial diversity on the surface of M. hyopneumoniae. Vaccines used to control Mycoplasma hyopneumoniae infection provide only partial protection. Proteins of the P97/P102 families are highly expressed, functionally redundant molecules that are substrates of endoproteases that generate multifunctional adhesin fragments on the cell surface. We show that P146 displays a chimeric structure consisting of an N terminus, which shares sequence identity with P97, and novel central and C-terminal regions. P146 is endoproteolytically processed at multiple sites, generating at least nine fragments on the surface of M. hyopneumoniae. Dominant cleavage events occurred at S/T-X-F↓X-D/E-like sites generating P50P146, P40P146, and P85P146. Recombinant proteins designed to mimic the major cleavage fragments bind porcine cilia, heparin, and plasminogen. P146 undergoes endoproteolytic processing events at multiple sites and with differential processing efficiency, generating combinatorial diversity on the surface of M. hyopneumoniae.


Cellular Microbiology | 2012

Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface

Lisa M. Seymour; Cheryl Jenkins; Ania T. Deutscher; Benjamin B. A. Raymond; Matthew P. Padula; Jessica L. Tacchi; Daniel R. Bogema; Graeme J. Eamens; Lauren K. Woolley; Nicholas E. Dixon; Mark J. Walker; Steven P. Djordjevic

Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen‐binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface‐located N‐terminal 60 kDa (P60) and C‐terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (KD ∼ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue‐specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface‐bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae‐bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae‐infected animals. Additionally, rP102 and rP42 bind fibronectin with KDs of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial‐like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae‐sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence.


Journal of Proteome Research | 2012

Mycoplasma hyopneumoniae Surface Proteins Mhp385 and Mhp384 Bind Host Cilia and Glycosaminoglycans and Are Endoproteolytically Processed by Proteases That Recognize Different Cleavage Motifs

Ania T. Deutscher; Jessica L. Tacchi; F. Chris Minion; Matthew P. Padula; Ben Crossett; Daniel R. Bogema; Cheryl Jenkins; Tracey A. Kuit; Mark J. Walker; Steven P. Djordjevic

P97 and P102 paralogues occur as endoproteolytic cleavage fragments on the surface of Mycoplasma hyopneumoniae that bind glycosaminoglycans, plasminogen, and fibronectin and perform essential roles in colonization of ciliated epithelia. We show that the P102 paralogue Mhp384 is efficiently cleaved at an S/T-X-F↓X-D/E-like site, creating P60(384) and P50(384). The P97 paralogue Mhp385 is inefficiently cleaved, with tryptic peptides from a 115 kDa protein (P115(385)) and 88 kDa (P88(385)) and 27 kDa (P27(385)) cleavage fragments identified by LC-MS/MS. This is the first time a preprotein belonging to the P97 and P102 paralogue families has been identified by mass spectrometry. The semitryptic peptide (752)IQFELEPISLNV(763) denotes the C-terminus of P88(385) and defines the novel cleavage site (761)L-N-V↓A-V-S(766) in Mhp385. P115(385), P88(385), P27(385), P60(384), and P50(384) were shown to reside extracellularly, though it is unknown how the fragments remain attached to the cell surface. Heparin- and cilium-binding sites were identified within P60(384), P50(384), and P88(385). No primary function was attributed to P27(385); however, this molecule contains four tandem R1 repeats with similarity to porcine collagen type VI (α3 chain). P97 and P102 paralogue families are adhesins targeted by several proteases with different cleavage efficiencies, and this process generates combinatorial complexity on the surface of M. hyopneumoniae.


Journal of Biological Chemistry | 2011

Sequence TTKF↓QE Defines the Site of Proteolytic Cleavage in Mhp683 Protein, a Novel Glycosaminoglycan and Cilium Adhesin of Mycoplasma hyopneumoniae

Daniel R. Bogema; Nichollas E. Scott; Matthew P. Padula; Jessica L. Tacchi; Benjamin B. A. Raymond; Cheryl Jenkins; Stuart J. Cordwell; F. Chris Minion; Mark J. Walker; Steven P. Djordjevic

Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45683, P48683, and P50683. A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48683 and P50683, determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45683, P48683, and P50683 reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1683–F5683, spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1683–F5683 also bound porcine epithelial cilia, and antisera to F2683 and F5683 significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45683, P48683, and P50683 each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.


Journal of Proteome Research | 2009

Mass spectrometric characterization of the surface-associated 42 kDa lipoprotein JlpA as a glycosylated antigen in strains of Campylobacter jejuni

Nichollas E. Scott; Daniel R. Bogema; Angela Connolly; Linda Falconer; Steven P. Djordjevic; Stuart J. Cordwell

Campylobacter jejuni is the most common cause of bacterial gastroenteritis in the developed world. Immunoproteomics highlighted a 42-45 kDa antigen that comigrated on two-dimensional (2-DE) gels with the C. jejuni major outer membrane protein (MOMP). Predictive analysis revealed two candidates for the identity of the antigen, the most likely of which was the surface-associated lipoprotein, JlpA. Recombinant JlpA (rJlpA) reacted with patient sera, confirming that JlpA is antigenic. Polyclonal antibodies raised against rJlpA reacted against 3 JlpA mass variants from multiple C. jejuni. These variants differed by approximately 1.5 kDa, suggesting the presence of the N-linked C. jejuni glycan on two sites. Soybean agglutinin affinity and 2-DE purified 2 JlpA glycoforms (43.5 and 45 kDa). Their identities were confirmed using mass spectrometry following trypsin digest. Glycopeptides within JlpA variants were identified by proteinase-K digestion, graphite micropurification and MS-MS. Sites of glycosylation were confirmed as asparagines 107 and 146, both of which are flanked by the N-linked sequon. Sequence analysis confirmed that the N146 sequon is conserved in all C. jejuni genomes examined to date, while the N107 sequon is absent in the reference strain NCTC 11168. Western blotting confirmed the presence of only a single JlpA glycoform in both virulent (O) and avirulent (GS) isolates of NCTC 11168. MS analysis showed that JlpA exists as 3 discrete forms, unmodified, glycosylated at N146, and glycosylated at both N(146/107), suggesting glycan addition at N146 is necessary for N107 glycosylation. Glycine extracts and Western blotting revealed that doubly glycosylated JlpA was the predominant form on the C. jejuni JHH1 surface; however, glycosylation is not required for antigenicity. This is the first study to identify N-linked glycosylation of a surface-exposed C. jejuni virulence factor and to show strain variation in glycosylation sites.


Parasites & Vectors | 2015

Detection of Theileria orientalis genotypes in Haemaphysalis longicornis ticks from southern Australia

Jade Frederick Hammer; D.L. Emery; Daniel R. Bogema; Cheryl Jenkins

BackgroundTheileria are blood-borne intracellular protozoal parasites belonging to the phylum Apicomplexa. Previously considered a benign parasite in Australia, outbreaks of clinical disease resulting from Theileria orientalis genotypes have been reported in Australia since 2006. Since this time, outbreaks have become widespread in south-eastern Australia, resulting in significant adverse impacts on local dairy and beef industries. This paper provides the first investigation into the possible biological and mechanical vectors involved in the rapid spread of the parasite.MethodsTo identify possible vectors for disease, ticks, biting flies and mosquitoes were collected within active outbreak regions of Gippsland, Victoria. Ticks were collected from cattle and wildlife, and mosquitoes and biting flies were collected in traps in close proximity to outbreak herds. Ticks were identified via DNA barcoding of the mitochondrial cytochrome oxidase I gene. Barcoded ticks were pooled according to species or phylogenetic group and tested for the presence of T. orientalis and the genotypes Ikeda, Chitose and Buffeli using real-time PCR.ResultsDNA barcoding and phylogenetic analysis identified ticks from the following species: Haemaphysalis longicornis, Ixodes holocyclus, Ixodes cornuatus, Ixodes hirsti, and Bothriocroton concolor. Additional Haemaphysalis, Ixodes and Bothriocroton spp. were also identified. Of the ticks investigated, only H. longicornis ticks from cattle carried theilerial DNA, with the genotypes Ikeda, Chitose and Buffeli represented. Mosquitoes collected in close proximity to outbreak herds included; Aedes camptorhynchus, Aedes notoscriptus, Coquillettidia linealis, Culex australicus, and Culex molestus. Low levels of T. orientalis Buffeli genotype were detected in some mosquitoes. The haematophagous flies tested negative.ConclusionsThis is the first demonstration of a potential vector for T. orientalis in the current Australasian disease outbreak.


Journal of Clinical Microbiology | 2015

Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

Daniel R. Bogema; A. T. Deutscher; S. Fell; D. Collins; G. J. Eamens; C. Jenkins

ABSTRACT Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease.


Open Biology | 2016

Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

Jessica L. Tacchi; Benjamin B. A. Raymond; Paul A. Haynes; Iain J. Berry; Michael Widjaja; Daniel R. Bogema; Lauren K. Woolley; Cheryl Jenkins; F. Chris Minion; Matthew P. Padula; Steven P. Djordjevic

Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity.


Infection, Genetics and Evolution | 2015

Temporal dynamics and subpopulation analysis of Theileria orientalis genotypes in cattle

Cheryl Jenkins; Melinda L. Micallef; S.M. Alex; D. Collins; Steven P. Djordjevic; Daniel R. Bogema

In Australia, outbreaks of clinical theileriosis caused by Theileria orientalis have been largely associated with the Ikeda genotype which can occur as a sole infection, or more commonly, as a mixture of genotypes. The most prevalent genotype, Chitose, frequently co-occurs with type Ikeda, however the role of this genotype in clinical disease has not been clearly established. Furthermore, the dynamics of individual genotypes in field infection of cattle have not been examined. In this study we developed quantitative PCR (qPCR) and genotyping methods to examine the role of the Chitose genotype in clinical disease and to investigate the temporal dynamics of T. orientalis Ikeda, Chitose and Buffeli genotypes in naïve animals introduced to a T. orientalis-endemic area. Analysis of the major piroplasm surface protein (MPSP) genes of Chitose isolates revealed the presence of two distinct phylogenetic clusters, Chitose A and Chitose B. A genotyping assay aimed at determining Chitose A/B allele frequency revealed that the Chitose A phylogenetic cluster is strongly associated with clinical disease but nearly always co-occurs with the Ikeda genotype. qPCR revealed that the Chitose genotype (particularly Chitose A), undergoes temporal switching in conjunction with the Ikeda genotype and contributes substantially to the overall parasite burden. The benign Buffeli genotype can also undergo temporal switching but levels of this genotype appear to remain low relative to the Ikeda and Chitose types. Interplay between vector and host immunological factors is presumed to be critical to the population dynamics observed in this study. Genotypic switching likely contributes to the persistence of T. orientalis in the host.


Veterinary Parasitology | 2015

Development and validation of an inexpensive and efficient method for the extraction of Theileria orientalis DNA from blood.

Daniel R. Bogema; S.A. Fell; B.A. O'Rourke; D. Collins; Graeme J. Eamens; Cheryl Jenkins

Theileria orientalis is an emerging bovine pathogen in Australasia. PCR-based detection methods for this parasite are sensitive but relatively expensive, partly due to costs associated with DNA extraction. An inexpensive and efficient technique was developed for the extraction of T. orientalis DNA from blood based on hypotonic erythrocyte lysis and detergent-proteinase K treatment (DPK method). The DPK method compares favourably to a commercial extraction kit when paired with a T. orientalis multiplex qPCR.

Collaboration


Dive into the Daniel R. Bogema's collaboration.

Top Co-Authors

Avatar

Cheryl Jenkins

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mark J. Walker

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melinda L. Micallef

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Cheryl Jenkins

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge