Daniel R. Cardoso
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel R. Cardoso.
Journal of the Brazilian Chemical Society | 2000
Maurício Boscolo; Cícero W. B. Bezerra; Daniel R. Cardoso; Benedito S. Lima Neto; Douglas W. Franco
A presenca de 51 compostos volateis, entre alcoois e esteres, em aguardentes de cana (cachaca) foi investigada por cromatografia gasosa de alta resolucao. Os seguintes compostos foram identificados e quantificados: metanol, 1,4-butanodiol, alcool 2-feniletilico, alcool amilico, alcool cetilico, alcool cinâmico, n-decanol, geraniol, alcool isoamilico, isobutanol, mentol, n-butanol, n-dodecanol, n-propanol, n-tetradecanol, propionato de amila, acetato de etila, benzoato de etila, heptanoato de etila, valerato de isoamila, propionato de metila, butirato de propila. O teor medio de alcoois superiores (262 mg/ 100 mL de alcool anidro a.a.) e o teor medio de esteres (24 mg/100 mL a.a.) em cachacas sao menores que os encontrados em outros destilados. O teor medio de metanol em cachacas, (6 mg/100 mL a.a.) e o mesmo que o encontrado em rum e menor em relacao ao encontrado em destilados de uva. Com relacao aos compostos analisados, nao foram observadas diferencas significativas no perfil quimico qualitativo das cachacas analisadas.
Journal of Physical Chemistry B | 2010
Kevin Huvaere; Daniel R. Cardoso; Paula Homem-de-Mello; Signe Westermann; Leif H. Skibsted
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k approximately 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with DeltaH(double dagger) = 22.6 kJ mol(-1) and DeltaS(double dagger) = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k approximately 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (DeltaG(o)(HAT) = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) approximately -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that DeltaG(o)(ET) > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of (3)RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Journal of Agricultural and Food Chemistry | 2004
Daniel R. Cardoso; Luiz G. Andrade-Sobrinho; Alexandre F. Leite-Neto; Roni Vicente Reche; William D. Isique; Márcia M. C. Ferreira; Benedito S. Lima-Neto; Douglas W. Franco
The differentiation between cachaça and rum using analytical data referred to alcohols (methanol, propanol, isobutanol, and isopentanol), acetaldehyde, ethyl acetate, organic acids (octanoic acid, decanoic acid, and dodecanoic acid), metals (Al, Ca, Co, Cu, Cr, Fe, Mg, Mn, Ni, Na, and Zn), and polyphenols (protocatechuic acid, sinapaldehyde, syringaldehyde, ellagic acid, syringic acid, gallic acid, (-)-epicatechin, vanillic acid, vanillin, p-coumaric acid, coniferaldehyde, coniferyl alcohol, kaempferol, and quercetin) is described. The organic and metal analyte contents were determined in 18 cachaça and 21 rum samples using chromatographic methods (GC-MS, GC-FID, and HPLC-UV-vis) and inductively coupled plasma atomic emission spectrometry, respectively. The analytical data of the above compounds, when treated by principal component analysis, hierarchical cluster analysis, discriminant analysis, and K-nearest neighbor analysis, provide a very good discrimination between the two classes of beverages.
Química Nova | 1998
Ronaldo Ferreira do Nascimento; Daniel R. Cardoso; Benedito S. Lima Neto; Douglas W. Franco; João Bosco Farias
This paper describes variations in the profile of the main volatile organic compounds present in Brazilian sugar cane spirits distilled in copper and stainless steel distillers. The main organic compounds: aldehydes, ketones, carboxylic acids, alcohols and esters, were determined through High Performance Liquid Chromatography (HPLC) and High Resolution Gas Cromatography (HRGC). The spirits produced in copper distillers exhibit higher contents of aldehydes with respect to the ones produced in stainless steel. The inverse is true with respect to the higher alcohol and ester contents. No significant variation has been observed for the carboxylic acids.
Química Nova | 2003
Daniel R. Cardoso; Benedito S. Lima-Neto; Douglas W. Franco; Ronaldo Ferreira do Nascimento
The quantitative chemical analysis of the Brazilian sugar cane spirit distilled from glass column packaged with copper, stainless steel, aluminum sponge, or porcelain balls is described. The main chemical compounds determined by gas chromatography coupled with flame ionization (FID) and flame photometric (FPD) detectors and liquid chromatography coupled with diode array detector are aldehydes, ketones, carboxylic acids, alcohols, esters and dimethylsulfite (DMS). The spirits produced either in columns filled with copper or aluminum pot still exhibits the lowest DMS contents but the higher sulfate and methanol contents, whereas spirits produced in stainless steel or porcelain showed higher DMS concentration and lower teors of sulfate ion and methanol. These observations are coherent with DMS oxidation to sulfate, with methanol as by product, in the presence of either copper or aluminum.
Química Nova | 2001
Eduardo R. Pérez; Daniel R. Cardoso; Douglas W. Franco
Analysis of alcohols, esters and carbonyl compounds were performed using HRGC and HPLC techniques in samples of fusel oils from three different Brazilian alcohol distilleries. High content of isoamyl alcohol (390 g.L-1), isobutyl alcohol (158 g.L-1), ethyl alcohol (28,4 g.L-1), methyl alcohol (16,6 g.L-1) and n-propyl alcohol (11,9 g.L-1) were found. These compounds represent 77 ± 8 % of the approximated weight of a liter of fusel oils. The obtained results show the feasibility of using fusel oils as low-cost raw material for the synthesis of chemicals.
Química Nova | 2009
Luiz Gualberto de Andrade Sobrinho; Luciana Tereza Dias Cappelini; Alexandre Ataide da Silva; Carlos Alexandre Galinaro; Silmara F. Buchviser; Daniel R. Cardoso; Douglas W. Franco
Herein, we report the concentration of ethyl carbamate (EC) and copper in 380 samples of sugar-cane spirit and 45 samples of manioc spirit as determined by GC-MS and FAAS respectively. The cyanide content determined spectrophotometrically is reported for the manioc spirit. Sugar cane spirit produced by alembic distillation (70,0 µg L-1) shown a lower content of EC than samples produced by column distillation (270 µg L-1). No simple correlation between the content of EC and copper for sugar cane spirit as well among the concentration of EC, copper, and cyanide for manioc spirit could be observed.
Journal of Agricultural and Food Chemistry | 2008
Eduardo S. P. Nascimento; Daniel R. Cardoso; Douglas W. Franco
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) microg L(-1), whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Physiotherapy Theory and Practice | 2015
Cleber Ferraresi; Thomas Beltrame; Fernando Fabrizzi; Eduardo Sanches Pereira do Nascimento; Marlus Karsten; Cristina de Oliveira Francisco; Audrey Borghi-Silva; Aparecida Maria Catai; Daniel R. Cardoso; Antonio G. Ferreira; Michael R. Hamblin; Vanderlei Salvador Bagnato; Nivaldo Antonio Parizotto
Abstract Recently, low-level laser (light) therapy (LLLT) has been used to improve muscle performance. This study aimed to evaluate the effectiveness of near-infrared light-emitting diode therapy (LEDT) and its mechanisms of action to improve muscle performance in an elite athlete. The kinetics of oxygen uptake (VO2), blood and urine markers of muscle damage (creatine kinase – CK and alanine), and fatigue (lactate) were analyzed. Additionally, some metabolic parameters were assessed in urine using proton nuclear magnetic resonance spectroscopy (1H NMR). A LED cluster with 50 LEDs (λ = 850 nm; 50 mW 15 s; 37.5 J) was applied on legs, arms and trunk muscles of a single runner athlete 5 min before a high-intense constant workload running exercise on treadmill. The athlete received either Placebo-1-LEDT; Placebo-2-LEDT; or Effective-LEDT in a randomized double-blind placebo-controlled trial with washout period of 7 d between each test. LEDT improved the speed of the muscular VO2 adaptation (∼−9 s), decreased O2 deficit (∼−10 L), increased the VO2 from the slow component phase (∼+348 ml min−1), and increased the time limit of exercise (∼+589 s). LEDT decreased blood and urine markers of muscle damage and fatigue (CK, alanine and lactate levels). The results suggest that a muscular pre-conditioning regimen using LEDT before intense exercises could modulate metabolic and renal function to achieve better performance.
Journal of Separation Science | 2009
Alexandre Ataide da Silva; Eduardo Sanches Pereira do Nascimento; Daniel R. Cardoso; Douglas W. Franco
A total of 25 sugarcane spirit extracts of six different Brazilian woods and oak, commonly used by cooperage industries for aging cachaça, were analyzed for the presence of 14 phenolic compounds (ellagic acid, gallic acid, vanillin, syringaldehyde, synapaldehyde, coniferaldehyde, vanillic acid, syringic acid, quercetin, trans-resveratrol, catechin, epicatechin, eugenol, and myricetin) and two coumarins (scopoletin and coumarin) by HPLC-DAD-fluorescence and HPLC-ESI-MS(n). Furthermore, an HPLC-DAD chromatographic fingerprint was build-up using chemometric analysis based on the chromatographic elution profiles of the extracts monitored at 280 nm. Major components identified and quantified in Brazilian wood extracts were coumarin, ellagic acid, and catechin, whereas oak extracts shown a major contribution of catechin, vanillic acid, and syringaldehyde. The main difference observed among oak and Brazilian woods remains in the concentration of coumarin, catechin, syringaldehyde, and coniferaldehyde. The chemometric analysis of the quantitative profile of the 14 phenolic compounds and two coumarins in the wood extracts provides a differentiation between the Brazilian wood and oak extracts. The chromatographic fingerprint treated by multivariate analysis revealed significant differences among Brazilian woods themselves and oak, clearly defining six groups of wood extracts: (i) oak extracts, (ii) jatobá extracts, (iii) cabreúva-parda extracts, (iv) amendoim extracts, (v) canela-sassafrás extracts and (vi) pequi extracts.