Daniel R. Lexcen
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel R. Lexcen.
PLOS ONE | 2013
Benyam P. Yoseph; Elise R. Breed; Christian E. Overgaard; Christina Ward; Zhe Liang; Maylene E. Wagener; Daniel R. Lexcen; Elizabeth R. Lusczek; Gregory J. Beilman; Eileen M. Burd; Alton B. Farris; David M. Guidot; Michael Koval; Mandy L. Ford; Craig M. Coopersmith
Background Patients admitted to the intensive care unit with alcohol use disorders have increased morbidity and mortality. The purpose of this study was to determine how chronic alcohol ingestion alters the host response to sepsis in mice. Methods Mice were randomized to receive either alcohol or water for 12 weeks and then subjected to cecal ligation and puncture. Mice were sacrificed 24 hours post-operatively or followed seven days for survival. Results Septic alcohol-fed mice had a significantly higher mortality than septic water-fed mice (74% vs. 41%, p = 0.01). This was associated with worsened gut integrity in alcohol-fed mice with elevated intestinal epithelial apoptosis, decreased crypt proliferation and shortened villus length. Further, alcohol-fed mice had higher intestinal permeability with decreased ZO-1 and occludin protein expression in the intestinal tight junction. The frequency of splenic and bone marrow CD4+ T cells was similar between groups; however, splenic CD4+ T cells in septic alcohol-fed mice had a marked increase in both TNF and IFN-γ production following ex vivo stimulation. Neither the frequency nor function of CD8+ T cells differed between alcohol-fed and water-fed septic mice. NK cells were decreased in both the spleen and bone marrow of alcohol-fed septic mice. Pulmonary myeloperoxidase levels and BAL levels of G-CSF and TFG-β were higher in alcohol-fed mice. Pancreatic metabolomics demonstrated increased acetate, adenosine, xanthine, acetoacetate, 3-hydroxybutyrate and betaine in alcohol-fed mice and decreased cytidine, uracil, fumarate, creatine phosphate, creatine, and choline. Serum and peritoneal cytokines were generally similar between alcohol-fed and water-fed mice, and there were no differences in bacteremia, lung wet to dry weight, or pulmonary, liver or splenic histology. Conclusions When subjected to the same septic insult, mice with chronic alcohol ingestion have increased mortality. Alterations in intestinal integrity, the host immune response, and pancreatic metabolomics may help explain this differential response.
Journal of Trauma-injury Infection and Critical Care | 2012
Daniel R. Lexcen; Elizabeth R. Lusczek; Nancy E. Witowski; Kristine E. Mulier; Greg J. Beilman
BACKGROUND Early recognition and intervention in hemorrhagic shock is essential to improved outcomes. However, the lack of robust diagnostic tools readily available to identify patients in the field inhibits the ability to provide timely intervention. Therefore, the development of a reliable prognostic indicator, such as a serum biomarker or a metabolic profile, has significant potential to improve far-forward trauma care. In this study, we used metabolomics as a tool to identify a metabolic state associated with the hemorrhagic shock and outcome in our porcine model of multiple injuries, shock, and resuscitation. METHODS Proton nuclear magnetic resonance spectroscopy was used to evaluate serum metabolites from 23 animals that underwent multiple injuries, controlled hemorrhage, and 20 hours of a standard resuscitation protocol. Serum samples were collected from the animals at baseline (before hemorrhage), at shock (after 45 minutes of shock), and at 8 hours of full resuscitation. RESULTS We were able to demonstrate shifts in the metabolome throughout different time points and construct a metabolic profile associated with mortality using partial least squares discriminate analysis. The metabolites most responsible for the classification of hemorrhagic shock in our model serve as markers for ischemia, changes in energy production, and cellular damage. Hemorrhagic shock was characterized by marked increases in tricarboxylic acid cycle intermediates, glycolytic-gluconeogenic by-products, purine-pyrimidine catabolism, and fatty acid oxidation. CONCLUSION The results of this study demonstrate the potential for metabolomics as a tool to classify the metabolic flux, to identify relevant biochemical pathways, and to identify clinically useful biomarkers.
Resuscitation | 2012
Kristine E. Mulier; Daniel R. Lexcen; Elizabeth Luzcek; Joseph J. Greenberg; Gregory J. Beilman
INTRODUCTION The neuroprotective ketone β-hydroxybutyrate (BHB) and the antioxidant melatonin have been found at elevated levels in hibernating mammals. Previous studies in rat models of hemorrhagic shock have suggested a benefit. We compared infusion of 4M BHB and 43 mM melatonin (BHB/M) to 4M sodium chloride and 20% DMSO (control solution) to evaluate for potential benefits in porcine hemorrhagic shock. METHODS Hemorrhagic shock was induced to obtain systolic blood pressures <50 mmHg for 60 min. Pigs were treated with a bolus of either BHB/M (n=9) or control solution (n=8) followed by 4-h infusion of the either BHB/M or control solution. All animals were then resuscitated for 20 h after shock. Physiological data were continually recorded, and blood samples were taken at intervals throughout the experiment. Serum samples were analyzed via high resolution NMR for metabolomic response. RESULTS BHB/M treatment significantly increased 24-h survival time when compared to treatment with control solution (100% versus 62%; p=0.050), with a trend toward decreased volume of resuscitative fluid administered to animals receiving BHB/M. BHB/M-treated animals had lower base deficit and higher oxygen consumption when compared to animals receiving control solution. Serum metabolite profiles revealed increases in β-hydroxybutyrate (BHB), succinate, 2-oxovalerate and adipate with BHB/M treatment as compared with animals treated with control infusion. CONCLUSION Infusion of BHB/M conferred a survival benefit over infusion of control solution in hemorrhagic shock. BHB and its products of metabolism are identified in serum of animals subjected to shock and treated with BHB/M. Further preclinical studies are needed to clarify the mechanisms of action of this promising treatment strategy.
Journal of Bioanalysis & Biomedicine | 2011
Elizabeth R. Lusczek; Teresa Nelson; Daniel R. Lexcen; Nancy E. Witowski; Kristine E. Mulier; Greg J. Beilman
There are many ways to normalize biofluid metabolomics data to account for changes in dilution, all of which have been thoroughly examined in model systems. Here, urine metabolomics data was examined under relevant physiological conditions obtained from a porcine model of hemorrhagic shock and resuscitation. This includes highly variable intravascular fluid volume and urine output coupled with large perturbations in the abundance of endogenous metabolites. Seven different normalization techniques and raw data were evaluated to determine an appropriate normalization technique in this setting, including spectral post-processing methods and physiological measures of concentration. Relationships between normalization constants for each urine sample were examined, as well as relationships between urinary and serum creatinine concentrations. Principal components analysis was used to examine clustering of metabolomics data. The set of normalization constants associated with each sample were reflective of urine concentration, with a trend toward concentration decreases during late resuscitation timepoints. Urinary creatinine normalized to urine output was most reflective of serum creatinine levels. Principal components analysis showed that urine samples clustered according to experimental timepoint for all normalization methods examined. Little separation was seen in raw data. Urine output-normalized data stands out from the six other normalization methods studied because it is reflective of renal clearance and should be used when comparing urine and serum metabolomics data.
PLOS ONE | 2015
Nancy E. Witowski; Elizabeth R. Lusczek; Charles E. Determan; Daniel R. Lexcen; Kristine E. Mulier; Beverly Gaul Ostrowski; Greg J. Beilman
Objective Hemorrhagic shock accompanied by injury represents a major physiologic stress. Fasted animals are often used to study hemorrhagic shock (with injury). A fasted state is not guaranteed in the general human population. The objective of this study was to determine if fed animals would exhibit a different metabolic profile in response to hemorrhagic shock with trauma when compared to fasted animals. Methods Proton (1H) NMR spectroscopy was used to determine concentrations of metabolites from four different compartments (liver, muscle, serum, urine) taken at defined time points throughout shock/injury and resuscitation. PLS-DA was performed and VIP lists established for baseline, shock and resuscitation (10 metabolites for each compartment at each time interval) on metabolomics data from surviving animals. Results Fed status prior to the occurrence of hemorrhagic shock with injury alters the metabolic course of this trauma and potentially affects mortality. The death rate for CPF animals is higher than FS animals (47 vs 28%). The majority of deaths occur post-resuscitation suggesting reperfusion injury. The metabolomics response to shock reflects priorities evident at baseline. FS animals raise the baseline degree of proteolysis to provide additional amino acids for energy production while CPF animals rely on both glucose and, to a lesser extent, amino acids. During early resuscitation levels of metabolites associated with energy production drop, suggesting diminished demand. Conclusions Feeding status prior to the occurrence of hemorrhagic shock with injury alters the metabolic course of this trauma and potentially affects mortality. The response to shock reflects metabolic priorities at baseline.
Shock | 2014
Elizabeth R. Lusczek; Daniel R. Lexcen; Nancy E. Witowski; Charles E. Determan; Kristine E. Mulier; Greg J. Beilman
ABSTRACT Hemorrhagic shock is a leading cause of trauma-related death in war and is associated with significant alterations in metabolism. Using archived serum samples from a previous study, the purpose of this work was to identify metabolic changes associated with induced hypothermia in a porcine model of hemorrhagic shock. Twelve Yorkshire pigs underwent a standardized hemorrhagic shock and resuscitation protocol to simulate battlefield injury with prolonged evacuation to definitive care in cold environments. Animals were randomized to receive either hypothermic (33°C) or normothermic (39°C) limited resuscitation for 8 h, followed by standard resuscitation. Proton nuclear magnetic resonance spectroscopy was used to evaluate serum metabolites from these animals at intervals throughout the hypothermic resuscitation period. Animals in the hypothermic group had a significantly higher survival rate (P = 0.02) than normothermic animals. Using random forest analysis, a difference in metabolic response between hypothermic and normothermic animals was identified. Hypothermic resuscitation was characterized by decreased concentrations of several muscle-related metabolites including taurine, creatine, creatinine, and amino acids. This study suggests that a decrease in muscle metabolism as a result of induced hypothermia is associated with improved survival.
Shock | 2015
Kristin P. Colling; Uroghupatei P. Iyegha; Javariah I. Asghar; Daniel R. Lexcen; Elizabeth R. Lusczek; Charles E. Determan; Nancy E. Witowski; Kristine E. Mulier; Greg J. Beilman
ABSTRACT Introduction: Hemorrhagic shock and injury lead to dramatic changes in metabolic demands and continue to be a leading cause of death. We hypothesized that altering the preinjury metabolic state with a carbohydrate load prior to injury would affect subsequent metabolic responses to injury and lead to improved survival. Methods: Sixty-four pigs were randomized to fasted (F) or carbohydrate prefeeding (CPF) groups and fasted 12 h prior to experiment. The CPF pigs received an oral carbohydrate load 1 h prior to anesthesia. All pigs underwent a standardized injury/hemorrhagic shock protocol. Physiologic parameters and laboratory values were obtained at set time points. Results: Carbohydrate prefeeding did not convey a survival benefit; instead, CPF animals had greater mortality rates (47% vs. 28%; P = 0.153; log-rank [Mantel-Cox]). Carbohydrate prefeeding animals also had higher rates of acute lung injury (odds ratio, 4.23; 95% confidence interval, 1.1–16.3) and altered oxygen utilization. Prior to shock and throughout resuscitation, CPF animals had significantly higher serum glucose levels than did the F animals. Conclusions: Carbohydrate prefeeding did not provide a survival benefit to swine subjected to hemorrhagic shock and polytrauma. Carbohydrate prefeeding led to significantly different metabolic profile than in fasted animals, and prefeeding led to a greater incidence of lung injury, increased multiorgan dysfunction, and altered oxygen utilization.
BMC Emergency Medicine | 2015
Elizabeth R. Lusczek; Tyrone L. Vincent; Daniel R. Lexcen; Vishwesh V. Kulkarni; Kristine E. Mulier; Greg J. Beilman
BackgroundTreatment with oral carbohydrate prior to trauma and hemorrhage confers a survival benefit in small animal models. The impact of fed states on survival in traumatically injured humans is unknown. This work uses regulatory networks to examine the effect of carbohydrate pre-feeding on metabolic response to polytrauma and hemorrhagic shock in a clinically-relevant large animal model.MethodsMale Yorkshire pigs were fasted overnight (n = 64). Pre-fed animals (n = 32) received an oral bolus of Karo\textregistered\syrup before sedation. All animals underwent a standardized trauma, hemorrhage, and resuscitation protocol. Serum samples were obtained at set timepoints. Proton NMR was used to identify and quantify serum metabolites. Metabolic regulatory networks were constructed from metabolite concentrations and rates of change in those concentrations to identify controlled nodes and controlling nodes of the network.ResultsOral carbohydrate pre-treatment was not associated with survival benefit. Six metabolites were identified as controlled nodes in both groups: adenosine, cytidine, glycerol, hypoxanthine, lactate, and uridine. Distinct groups of controlling nodes were associated with controlled nodes; however, the composition of these groups depended on feeding status.ConclusionsA common metabolic output, typically associated with injury and hypoxia, results from trauma and hemorrhagic shock. However, this output is directed by different metabolic inputs depending upon the feeding status of the subject. Nodes of the network that are related to mortality can potentially be manipulated for therapeutic effect; however, these nodes differ depending upon feeding status.
Molecular BioSystems | 2016
Nancy E. Witowski; Elizabeth R. Lusczek; Charles E. Determan; Daniel R. Lexcen; Kristine E. Mulier; Andrea Wolf; Beverly Gaul Ostrowski; Greg J. Beilman
Hemorrhagic shock, a result of extensive blood loss, is a dominant factor in battlefield morbidity and mortality. Early rodent studies in hemorrhagic shock reported carbohydrate feeding prior to the induction of hemorrhagic shock decreased mortality. When repeated in our laboratory with a porcine model, carbohydrate pre-feed resulted in a 60% increase in death rate following hemorrhagic shock with trauma when compared to fasted animals (15/32 or 47% vs. 9/32 or 28%). In an attempt to explain the unexpected death rate for pre-fed animals, we further investigated the metabolic profiles of pre-fed non-survivors (n = 15) across 4 compartments (liver, muscle, serum, and urine) at specific time intervals (pre-shock, shock, and resuscitation) and compared them to pre-fed survivors (n = 17). As hypothesized, pre-fed pigs that died as a result of hemorrhage and trauma showed differences in their metabolic and physiologic profiles at all time intervals and in all compartments when compared to pre-fed survivors. Our data suggest that, although all animals were subjected to the same shock and trauma protocol, non-survivors exhibited altered carbohydrate processing as early as the pre-shock sampling point. This was evident in (for example) the higher levels of ATP and markers of greater anabolic activity in the muscle at the pre-shock time point. Based on the metabolic findings, we propose two mechanisms that connect pre-fed status to a higher death rate: (1) animals that die are more susceptible to opening of the mitochondrial permeability transition pore, a major factor in ischemia/reperfusion injury; and (2) loss of fasting-associated survival mechanisms in pre-fed animals.
Metabolomics | 2013
Elizabeth R. Lusczek; Daniel R. Lexcen; Nancy E. Witowski; Kristine E. Mulier; Greg J. Beilman