Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Riordon is active.

Publication


Featured researches published by Daniel R. Riordon.


The FASEB Journal | 2005

Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells

Ji-Dong Fu; Jun Li; David Tweedie; Hui-Mei Yu; Le Chen; Rong Wang; Daniel R. Riordon; Sheryl A. Brugh; Shi-Qiang Wang; Kenneth R. Boheler; Huang-Tian Yang

In adult myocardium, excitation‐contraction coupling is critically regulated by sarcoplasmic reticulum (SR) Ca2+ release via type 2 ryanodine receptor (RyR2), but generally, it is believed that SR‐function is rudimentary in the fetal heart and in embryonic stem (ES) cell‐derived cardiomyocytes (ESCMs), a possible source for cell replacement therapies. This study used wild‐type (RyR2+/+) and RyR2 null (RyR2−/−) ESCMs as an in vitro model of cardiomyogenesis, together with pharmacological approaches and expression profiles of genes relevant for SR function, to elucidate the functional importance of RyR2 and SR on the regulation of Ca2+ transients and contraction during early cardiomyocyte development. During differentiation of RyR2+/+ ESCMs, SR function developed progressively with increased basal cytosolic free Ca2+ concentration ([Ca2+]i), enhanced frequency and amplitude, and decreased duration of Ca2+ transients that were inhibited by ryanodine and thapsigargin. These functional traits correlated with SR Ca2+ load and the expression of RyR2, SERCA2a, and phospholamban. RyR2−/− ESCMs, comparatively, demonstrated a significantly prolonged time‐to‐peak and reduced frequency of Ca2+ transients and contractions. β‐adrenergic stimulation of RyR2+/+ ESCMs increased the frequency and amplitude of Ca2+ transients with differentiation but was much weaker in RyR2−/− ESCMs. We conclude that functional SR and control of RyR2‐mediated SR Ca2+ release directly contribute to the spontaneous and β‐adrenergic receptor‐stimulated contraction of ESCMs, even at very immature stages of development.


PLOS ONE | 2008

B-MYB Is Essential for Normal Cell Cycle Progression and Chromosomal Stability of Embryonic Stem Cells

Kirill V. Tarasov; Yelena S. Tarasova; Wai Leong Tam; Daniel R. Riordon; Steven T. Elliott; Gabriela Kania; Jinliang Li; Satoshi Yamanaka; David G. Crider; Gianluca Testa; Ronald A. Li; Bing Lim; Colin L. Stewart; Yie Liu; Jennifer E. Van Eyk; Robert P. Wersto; Anna M. Wobus; Kenneth R. Boheler

Background The transcription factor B-Myb is present in all proliferating cells, and in mice engineered to remove this gene, embryos die in utero just after implantation due to inner cell mass defects. This lethal phenotype has generally been attributed to a proliferation defect in the cell cycle phase of G1. Methodology/Principal Findings In the present study, we show that the major cell cycle defect in murine embryonic stem (mES) cells occurs in G2/M. Specifically, knockdown of B-Myb by short-hairpin RNAs results in delayed transit through G2/M, severe mitotic spindle and centrosome defects, and in polyploidy. Moreover, many euploid mES cells that are transiently deficient in B-Myb become aneuploid and can no longer be considered viable. Knockdown of B-Myb in mES cells also decreases Oct4 RNA and protein abundance, while over-expression of B-MYB modestly up-regulates pou5f1 gene expression. The coordinated changes in B-Myb and Oct4 expression are due, at least partly, to the ability of B-Myb to directly modulate pou5f1 gene promoter activity in vitro. Ultimately, the loss of B-Myb and associated loss of Oct4 lead to an increase in early markers of differentiation prior to the activation of caspase-mediated programmed cell death. Conclusions/Significance Appropriate B-Myb expression is critical to the maintenance of chromosomally stable and pluripotent ES cells, but its absence promotes chromosomal instability that results in either aneuploidy or differentiation-associated cell death.


Mechanisms of Development | 2002

SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro.

Sergey V. Anisimov; Kirill V. Tarasov; Daniel R. Riordon; Anna M. Wobus; Kenneth R. Boheler

Transcriptome profiling facilitates the identification of developmentally regulated genes. To quantify the functionally active genome of P19 embryonic carcinoma (EC) cells induced to form cardiomyocytes, we employed serial analysis of gene expression (SAGE) to sequence and compare a total of 171,735 SAGE tags from three libraries (undifferentiated P19 EC cells, differentiation days 3 + 0.5 and 3 + 3.0). After in vitro differentiation, only 3.1% of the gene products demonstrated significant (P < 0.05) changes in expression. The most highly significant changes (P < 0.01) involved altered expression of 410 genes encoding predominantly transcription factors, differentiation factors and growth regulators. Quantitative polymerase chain reaction analysis and in situ hybridization revealed five growth regulators (Dlk1, Igfbp5, Hmga2, Podxl and Ptn) and two unknown ESTs with expression profiles similar to known cardiac transcription factors, implicating these growth regulators in cardiac differentiation. These SAGE libraries thus serve as a reference resource for understanding the role of differentiation-dependent genes in embryonic stem cell models induced to form cardiomyocytes in vitro.


Stem cell reports | 2014

A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets

Kenneth R. Boheler; Subarna Bhattacharya; Erin M. Kropp; Sandra Chuppa; Daniel R. Riordon; Damaris Bausch-Fluck; Paul W. Burridge; Joseph C. Wu; Robert P. Wersto; Godfrey Chi-Fung Chan; Sridhar Rao; Bernd Wollscheid; Rebekah L. Gundry

Summary Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs) would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs) and induced PSCs (hiPSCs). Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures.


Molecular Medicine | 2011

A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage.

Ismayil Ahmet; Hyun Jin Tae; Magdalena Juhaszova; Daniel R. Riordon; Kenneth R. Boheler; Steven J. Sollott; Michael Brines; Anthony Cerami; Edward G. Lakatta; Mark I. Talan

Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO receptor and thus, is not erythropoietic, retains tissue protective properties of EPO. Here we compared the ability of pHBP and EPO to protect cardiac myocytes from oxidative stress in vitro and cardiac tissue from ischemic damage in vivo. HBP, similar to EPO, increased the reactive oxygen species (ROS) threshold for induction of the mitochondrial permeability transition by 40%. In an experimental model of myocardial infarction induced by permanent ligation of a coronary artery in rats, a single bolus injection of 60 µg/kg of pHBP immediately after coronary ligation, similar to EPO, reduced apoptosis in the myocardial area at risk, examined 24 h later, by 80% and inflammation by 34%. Myocardial infarction (MI) measured 24 h after coronary ligation was similarly reduced by 50% in both pHBP- and EPO-treated rats. Two wks after surgery, left ventricular remodeling (ventricular dilation) and functional decline (fall in ejection fraction) assessed by echocardiography were significantly and similarly attenuated in pHBP- and EPO-treated rats, and MI size was reduced by 25%. The effect was retained during the 6-wk follow-up. A single bolus injection of pHBP immediately after coronary ligation was effective in reduction of MI size in a dose as low as 1 µg/kg, but was ineffective at a 60 µg/kg dose if administered 24 h after MI induction. We conclude that pHBP is equally cardioprotective with EPO and deserves further consideration as a safer alternative to rhEPO in the search for therapeutic options to reduce myocardial damage following blockade of the coronary circulation.


Molecular & Cellular Proteomics | 2012

A Cell Surfaceome Map for Immunophenotyping and Sorting Pluripotent Stem Cells

Rebekah L. Gundry; Daniel R. Riordon; Yelena S. Tarasova; Sandra Chuppa; Subarna Bhattacharya; Ondrej Juhasz; Olena Wiedemeier; Samuel Milanovich; Fallon K. Noto; Irina Tchernyshyov; Kimberly Raginski; Damaris Bausch-Fluck; Hyun-Jin Tae; Shannon Marshall; Stephen A. Duncan; Bernd Wollscheid; Robert P. Wersto; Sridhar Rao; Jennifer E. Van Eyk; Kenneth R. Boheler

Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.


Clinical Science | 2011

Molecular mechanisms of cardiomyocyte aging

Anna Sheydina; Daniel R. Riordon; Kenneth R. Boheler

Western societies are rapidly aging, and cardiovascular diseases are the leading cause of death. In fact, age and cardiovascular diseases are positively correlated, and disease syndromes affecting the heart reach epidemic proportions in the very old. Genetic variations and molecular adaptations are the primary contributors to the onset of cardiovascular disease; however, molecular links between age and heart syndromes are complex and involve much more than the passage of time. Changes in CM (cardiomyocyte) structure and function occur with age and precede anatomical and functional changes in the heart. Concomitant with or preceding some of these cellular changes are alterations in gene expression often linked to signalling cascades that may lead to a loss of CMs or reduced function. An understanding of the intrinsic molecular mechanisms underlying these cascading events has been instrumental in forming our current understanding of how CMs adapt with age. In the present review, we describe the molecular mechanisms underlying CM aging and how these changes may contribute to the development of cardiovascular diseases.


Mechanisms of Development | 2001

A distant upstream region of the rat multipartite Na+–Ca2+ exchanger NCX1 gene promoter is sufficient to confer cardiac-specific expression

Maren U Koban; Sheryl A. Brugh; Daniel R. Riordon; Kimberley A. Dellow; Huang-Tian Yang; David Tweedie; Kenneth R. Boheler

The Na(+)-Ca(2+) exchanger (NCX) regulates intracellular calcium homeostasis. We report on an upstream region of the rat NCX1 multipartite promoter that is active in cardiac myocytes. Although inactive in most non-cardiac cell lines, its activity can be rescued by cotransfection with GATA-4 and -6, but not GATA-5 transcription factors. In transgenic mice and similar to endogenous NCX1 mRNA expression, the upstream promoter region directs uniform beta-galactosidase expression in cardiac myocytes from approximately 7.75dpc. In adult mouse hearts, promoter activity is, however, significantly reduced and heterogeneous, except in the conduction system (sinoatrial and atrioventricular node, atrioventricular bundles). The upstream NCX1 promoter region thus directs appropriate spatial and temporal control of cardiac expression throughout development.


PLOS ONE | 2012

The B-MYB Transcriptional Network Guides Cell Cycle Progression and Fate Decisions to Sustain Self-Renewal and the Identity of Pluripotent Stem Cells

Ming Zhan; Daniel R. Riordon; Bin Yan; Yelena S. Tarasova; Sarah Bruweleit; Kirill V. Tarasov; Ronald A. Li; Robert P. Wersto; Kenneth R. Boheler

Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.


Journal of Molecular and Cellular Cardiology | 2016

Ca2 +/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function

Yevgeniya O. Lukyanenko; Antoine Younes; Alexey E. Lyashkov; Kirill V. Tarasov; Daniel R. Riordon; Joon-Ho Lee; Syevda Sirenko; Evgeny Kobrinsky; Bruce D. Ziman; Yelena S. Tarasova; Magdalena Juhaszova; Steven J. Sollott; David R. Graham; Edward G. Lakatta

Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.

Collaboration


Dive into the Daniel R. Riordon's collaboration.

Top Co-Authors

Avatar

Kenneth R. Boheler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Edward G. Lakatta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yelena S. Tarasova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kirill V. Tarasov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Syevda Sirenko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rebekah L. Gundry

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Robert P. Wersto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexey E. Lyashkov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dongmei Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge