Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Stahler is active.

Publication


Featured researches published by Daniel R. Stahler.


Science | 2009

Molecular and Evolutionary History of Melanism in North American Gray Wolves

Tovi M. Anderson; Bridgett M. vonHoldt; Sophie I. Candille; Marco Musiani; Claudia Greco; Daniel R. Stahler; Douglas W. Smith; Badri Padhukasahasram; Ettore Randi; Jennifer A. Leonard; Carlos Bustamante; Elaine A. Ostrander; Hua Tang; Robert K. Wayne; Gregory S. Barsh

Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.


Molecular Ecology | 2008

The genealogy and genetic viability of reintroduced Yellowstone grey wolves

Bridgett M. vonHoldt; Daniel R. Stahler; Douglas W. Smith; Dent A. Earl; John P. Pollinger; Robert K. Wayne

The recovery of the grey wolf in Yellowstone National Park is an outstanding example of a successful reintroduction. A general question concerning reintroduction is the degree to which genetic variation has been preserved and the specific behavioural mechanisms that enhance the preservation of genetic diversity and reduce inbreeding. We have analysed 200 Yellowstone wolves, including all 31 founders, for variation in 26 microsatellite loci over the 10‐year reintroduction period (1995–2004). The population maintained high levels of variation (1995 H0 = 0.69; 2004 H0 = 0.73) with low levels of inbreeding (1995 FIS = –0.063; 2004 FIS = –0.051) and throughout, the population expanded rapidly (N1995 = 21; N2004 = 169). Pedigree‐based effective population size ratios did not vary appreciably over the duration of population expansion (1995 Ne/Ng = 0.29; 2000 Ne/Ng = 0.26; 2004 Ne/Ng = 0.33). We estimated kinship and found only two of 30 natural breeding pairs showed evidence of being related (average r = –0.026, SE = 0.03). We reconstructed the genealogy of 200 wolves based on genetic and field data and discovered that they avoid inbreeding through a wide variety of behavioural mechanisms including absolute avoidance of breeding with related pack members, male‐biased dispersal to packs where they breed with nonrelatives, and female‐biased subordinate breeding. We documented a greater diversity of such population assembly patterns in Yellowstone than previously observed in any other natural wolf population. Inbreeding avoidance is nearly absolute despite the high probability of within‐pack inbreeding opportunities and extensive interpack kinship ties between adjacent packs. Simulations showed that the Yellowstone population has levels of genetic variation similar to that of a population managed for high variation and low inbreeding, and greater than that expected for random breeding within packs or across the entire breeding pool. Although short‐term losses in variation seem minimal, future projections of the population at carrying capacity suggest significant inbreeding depression will occur without connectivity and migratory exchange with other populations.


Science | 2011

Modeling Effects of Environmental Change on Wolf Population Dynamics, Trait Evolution, and Life History

Tim Coulson; Daniel R. MacNulty; Daniel R. Stahler; Bridgett M. vonHoldt; Robert K. Wayne; Douglas W. Smith

Analysis of a 20-year data set on Yellowstone wolves reveals that environmental change generates eco-evolutionary responses. Environmental change has been observed to generate simultaneous responses in population dynamics, life history, gene frequencies, and morphology in a number of species. But how common are such eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they require a specific type of change? Can we accurately predict eco-evolutionary responses? We address these questions using theory and data from the study of Yellowstone wolves. We show that environmental change is expected to generate eco-evolutionary change, that changes in the average environment will affect wolves to a greater extent than changes in how variable it is, and that accurate prediction of the consequences of environmental change will probably prove elusive.


Journal of Animal Ecology | 2012

Seasonal patterns of predation for gray wolves in the multi‐prey system of Yellowstone National Park

Matthew C. Metz; Douglas W. Smith; John A. Vucetich; Daniel R. Stahler; Rolf O. Peterson

1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. Ones understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in predation because of changes in prey vulnerability. Patterns of wolf predation were influenced by the nutritional condition of adult elk and the availability of smaller prey (i.e. elk calves, deer). We discuss how these patterns affect our overall understanding of predator and prey population dynamics.


Ecology Letters | 2009

Predatory senescence in ageing wolves

Daniel R. MacNulty; Douglas W. Smith; John A. Vucetich; L. David Mech; Daniel R. Stahler; Craig Packer

It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.


Journal of Wildlife Management | 2010

Survival of Colonizing Wolves in the Northern Rocky Mountains of the United States, 1982-2004

Douglas W. Smith; Edward E. Bangs; John K. Oakleaf; Curtis Mack; Joseph A. Fontaine; Diane K. Boyd; Michael D. Jimenez; Daniel H. Pletscher; Carter C. Niemeyer; Thomas J. Meier; Daniel R. Stahler; James Holyan; Valpha J. Asher; Dennis L. Murray

Abstract After roughly a 60-year absence, wolves (Canis lupus) immigrated (1979) and were reintroduced (1995–1996) into the northern Rocky Mountains (NRM), USA, where wolves are protected under the Endangered Species Act. The wolf recovery goal is to restore an equitably distributed metapopulation of ≥30 breeding pairs and 300 wolves in Montana, Idaho, and Wyoming, while minimizing damage to livestock; ultimately, the objective is to establish state-managed conservation programs for wolf populations in NRM. Previously, wolves were eradicated from the NRM because of excessive human killing. We used Andersen–Gill hazard models to assess biological, habitat, and anthropogenic factors contributing to current wolf mortality risk and whether federal protection was adequate to provide acceptably low hazards. We radiocollared 711 wolves in Idaho, Montana, and Wyoming (e.g., NRM region of the United States) from 1982 to 2004 and recorded 363 mortalities. Overall, annual survival rate of wolves in the recovery areas was 0.750 (95% CI  =  0.728–0.772), which is generally considered adequate for wolf population sustainability and thereby allowed the NRM wolf population to increase. Contrary to our prediction, wolf mortality risk was higher in the northwest Montana (NWMT) recovery area, likely due to less abundant public land being secure wolf habitat compared to other recovery areas. In contrast, lower hazards in the Greater Yellowstone Area (GYA) and central Idaho (CID) likely were due to larger core areas that offered stronger wolf protection. We also found that wolves collared for damage management purposes (targeted sample) had substantially lower survival than those collared for monitoring purposes (representative sample) because most mortality was due to human factors (e.g., illegal take, control). This difference in survival underscores the importance of human-caused mortality in this recovering NRM population. Other factors contributing to increased mortality risk were pup and yearling age class, or dispersing status, which was related to younger age cohorts. When we included habitat variables in our analysis, we found that wolves having abundant agricultural and private land as well as livestock in their territory had higher mortality risk. Wolf survival was higher in areas with increased wolf density, implying that secure core habitat, particularly in GYA and CID, is important for wolf protection. We failed to detect changes in wolf hazards according to either gender or season. Maintaining wolves in NWMT will require greater attention to human harvest, conflict resolution, and illegal mortality than in either CID or GYA; however, if human access increases in the future in either of the latter 2 areas hazards to wolves also may increase. Indeed, because overall suitable habitat is more fragmented and the NRM has higher human access than many places where wolves roam freely and are subject to harvest (e.g., Canada and AK), monitoring of wolf vital rates, along with concomitant conservation and management strategies directed at wolves, their habitat, and humans, will be important for ensuring long-term viability of wolves in the region.


Journal of Nutrition | 2006

Foraging and Feeding Ecology of the Gray Wolf (Canis lupus): Lessons from Yellowstone National Park, Wyoming, USA

Daniel R. Stahler; Douglas W. Smith; Debra S. Guernsey

The foraging and feeding ecology of gray wolves is an essential component to understanding the role that top carnivores play in shaping the structure and function of terrestrial ecosystems. In Yellowstone National Park (YNP), predation studies on a highly visible, reintroduced population of wolves are increasing our understanding of this aspect of wolf ecology. Wolves in YNP feed primarily on elk, despite the presence of other ungulate species. Patterns of prey selection and kill rates in winter have varied seasonally each year from 1995 to 2004 and changed in recent years as the wolf population has become established. Wolves select elk based on their vulnerability as a result of age, sex, and season and therefore kill primarily calves, old cows, and bulls that have been weakened by winter. Summer scat analysis reveals an increased variety in diet compared with observed winter diets, including other ungulate species, rodents, and vegetation. Wolves in YNP hunt in packs and, upon a successful kill, share in the evisceration and consumption of highly nutritious organs first, followed by major muscle tissue, and eventually bone and hide. Wolves are adapted to a feast-or-famine foraging pattern, and YNP packs typically kill and consume an elk every 2-3 d. However, wolves in YNP have gone without fresh meat for several weeks by scavenging off old carcasses that consist mostly of bone and hide. As patterns of wolf density, prey density, weather, and vulnerability of prey change, in comparison with the conditions of the study period described here, we predict that there will also be significant changes in wolf predation patterns and feeding behavior.


Molecular Ecology | 2010

A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States

Bridgett M. vonHoldt; Daniel R. Stahler; Edward E. Bangs; Douglas W. Smith; Mike Jimenez; Curt M. Mack; Carter C. Niemeyer; John P. Pollinger; Robert K. Wayne

The successful re‐introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re‐introduced founders, for variation in 26 microsatellite loci over the initial 10‐year recovery period (1995–2004). The population maintained high levels of variation (HO = 0.64–0.72; allelic diversity k = 7.0–10.3) with low levels of inbreeding (FIS < 0.03) and throughout this period, the population expanded rapidly (n1995 = 101; n2004 = 846). Individual‐based Bayesian analyses revealed significant population genetic structure and identified three subpopulations coinciding with designated recovery areas. Population assignment and migrant detection were difficult because of the presence of related founders among different recovery areas and required a novel approach to determine genetically effective migration and admixture. However, by combining assignment tests, private alleles, sibship reconstruction, and field observations, we detected genetically effective dispersal among the three recovery areas. Successful conservation of Northern Rocky Mountain wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity.


Journal of Animal Ecology | 2013

The adaptive value of morphological, behavioural and life-history traits in reproductive female wolves

Daniel R. Stahler; Daniel R. MacNulty; Robert K. Wayne; Bridgett M. vonHoldt; Douglas W. Smith

Reproduction in social organisms is shaped by numerous morphological, behavioural and life-history traits such as body size, cooperative breeding and age of reproduction, respectively. Little is known, however, about the relative influence of these different types of traits on reproduction, particularly in the context of environmental conditions that determine their adaptive value. Here, we use 14 years of data from a long-term study of wolves (Canis lupus) in Yellowstone National Park, USA, to evaluate the relative effects of different traits and ecological factors on the reproductive performance (litter size and survival) of breeding females. At the individual level, litter size and survival improved with body mass and declined with age (c. 4-5 years). Grey-coloured females had more surviving pups than black females, which likely contributed to the maintenance of coat colour polymorphism in this system. The effect of pack size on reproductive performance was nonlinear as litter size peaked at eight wolves and then declined, and litter survival increased rapidly up to three wolves, beyond which it increased more gradually. At the population level, litter size and survival decreased with increasing wolf population size and canine distemper outbreaks. The relative influence of these different-level factors on wolf reproductive success followed individual > group > population. Body mass was the primary determinant of litter size, followed by pack size and population size. Body mass was also the main driver of litter survival, followed by pack size and disease. Reproductive gains because of larger body size and cooperative breeding may mitigate reproductive losses because of negative density dependence and disease. These findings highlight the adaptive value of large body size and sociality in promoting individual fitness in stochastic and competitive environments.


Journal of Animal Ecology | 2014

Density‐dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus)

Sarah Cubaynes; Daniel R. MacNulty; Daniel R. Stahler; Kira A. Quimby; Douglas W. Smith; Tim Coulson

Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high removal rates maintain wolves at lower densities, limited inter-pack interactions may prevent density-dependent survival, consistent with our findings in the interior of the park.

Collaboration


Dive into the Daniel R. Stahler's collaboration.

Top Co-Authors

Avatar

Douglas W. Smith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Vucetich

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Elaine A. Ostrander

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Emily S. Almberg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge