Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel R. Thedens is active.

Publication


Featured researches published by Daniel R. Thedens.


Nature | 2008

Sarcolemma-localized nNOS is required to maintain activity after mild exercise

Yvonne M. Kobayashi; Erik P. Rader; Robert W. Crawford; Nikhil K. Iyengar; Daniel R. Thedens; John A. Faulkner; Swapnesh V. Parikh; Robert M. Weiss; Jeffrey S. Chamberlain; Steven A. Moore; Kevin P. Campbell

Many neuromuscular conditions are characterized by an exaggerated exercise-induced fatigue response that is disproportionate to activity level. This fatigue is not necessarily correlated with greater central or peripheral fatigue in patients, and some patients experience severe fatigue without any demonstrable somatic disease. Except in myopathies that are due to specific metabolic defects, the mechanism underlying this type of fatigue remains unknown. With no treatment available, this form of inactivity is a major determinant of disability. Here we show, using mouse models, that this exaggerated fatigue response is distinct from a loss in specific force production by muscle, and that sarcolemma-localized signalling by neuronal nitric oxide synthase (nNOS) in skeletal muscle is required to maintain activity after mild exercise. We show that nNOS-null mice do not have muscle pathology and have no loss of muscle-specific force after exercise but do display this exaggerated fatigue response to mild exercise. In mouse models of nNOS mislocalization from the sarcolemma, prolonged inactivity was only relieved by pharmacologically enhancing the cGMP signal that results from muscle nNOS activation during the nitric oxide signalling response to mild exercise. Our findings suggest that the mechanism underlying the exaggerated fatigue response to mild exercise is a lack of contraction-induced signalling from sarcolemma-localized nNOS, which decreases cGMP-mediated vasomodulation in the vessels that supply active muscle after mild exercise. Sarcolemmal nNOS staining was decreased in patient biopsies from a large number of distinct myopathies, suggesting a common mechanism of fatigue. Our results suggest that patients with an exaggerated fatigue response to mild exercise would show clinical improvement in response to treatment strategies aimed at improving exercise-induced signalling.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity

Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.


Journal of Clinical Investigation | 2008

Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome

Kamal Rahmouni; Melissa A. Fath; Seongjin Seo; Daniel R. Thedens; Christopher J. Berry; Robert M. Weiss; Darryl Y. Nishimura; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is a heterogeneous genetic disorder characterized by many features, including obesity and cardiovascular disease. We previously developed knockout mouse models of 3 BBS genes: BBS2, BBS4, and BBS6. To dissect the mechanisms involved in the metabolic disorders associated with BBS, we assessed the development of obesity in these mouse models and found that BBS-null mice were hyperphagic, had low locomotor activity, and had elevated circulating levels of the hormone leptin. The effect of exogenous leptin on body weight and food intake was attenuated in BBS mice, which suggests that leptin resistance may contribute to hyperleptinemia. In other mouse models of obesity, leptin resistance may be selective rather than systemic; although mice became resistant to leptins anorectic effects, the ability to increase renal sympathetic nerve activity (SNA) was preserved. Although all 3 of the BBS mouse models were similarly resistant to leptin, the sensitivity of renal SNA to leptin was maintained in Bbs4 -/- and Bbs6 -/- mice, but not in Bbs2 -/- mice. Consequently, Bbs4 -/- and Bbs6 -/- mice had higher baseline renal SNA and arterial pressure and a greater reduction in arterial pressure in response to ganglionic blockade. Furthermore, we found that BBS mice had a decreased hypothalamic expression of proopiomelanocortin, which suggests that BBS genes play an important role in maintaining leptin sensitivity in proopiomelanocortin neurons.


Cell Metabolism | 2010

The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance.

Justin L. Grobe; Connie L. Grobe; Terry G. Beltz; Scott G. Westphal; Donald A. Morgan; Di Xu; Willem J. de Lange; Huiping Li; Koji Sakai; Daniel R. Thedens; Lisa A. Cassis; Kamal Rahmouni; Allyn L. Mark; Alan Kim Johnson; Curt D. Sigmund

The renin-angiotensin system (RAS), in addition to its endocrine functions, plays a role within individual tissues such as the brain. The brain RAS is thought to control blood pressure through effects on fluid intake, vasopressin release, and sympathetic nerve activity (SNA), and may regulate metabolism through mechanisms which remain undefined. We used a double-transgenic mouse model that exhibits brain-specific RAS activity to examine mechanisms contributing to fluid and energy homeostasis. The mice exhibit high fluid turnover through increased adrenal steroids, which is corrected by adrenalectomy and attenuated by mineralocorticoid receptor blockade. They are also hyperphagic but lean because of a marked increase in body temperature and metabolic rate, mediated by increased SNA and suppression of the circulating RAS. β-adrenergic blockade or restoration of circulating angiotensin-II, but not adrenalectomy, normalized metabolic rate. Our data point to contrasting mechanisms by which the brain RAS regulates fluid intake and energy expenditure.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Detecting activity-evoked pH changes in human brain

Vincent A. Magnotta; Hye Young Heo; Brian J. Dlouhy; Nader S. Dahdaleh; Robin L. Follmer; Daniel R. Thedens; Michael J. Welsh; John A. Wemmie

Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T1 relaxation in the rotating frame (T1ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T1ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive 31P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T1ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T1ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Mechanisms mediating renal sympathetic activation to leptin in obesity

Donald A. Morgan; Daniel R. Thedens; Robert M. Weiss; Kamal Rahmouni

Leptin plays a critical role in the control of energy homeostasis. The sympathetic cardiovascular actions of leptin have emerged as a potential link between obesity and hypertension. We previously demonstrated that in mice, modest obesity induced by 10 wk of a high-fat diet is associated with preservation of leptin ability to increase renal sympathetic nerve activity (SNA) despite the resistance to the metabolic effects of leptin. Here, we examined whether selective leptin resistance exists in mice with late-stage diet-induced obesity (DIO) produced by 20 wk of a high-fat diet. The decrease in food intake and body weight induced by intraperitoneal or intracerebroventricular injection of leptin was significantly attenuated in the DIO mice. Regional SNA responses to intravenous leptin were also attenuated in DIO mice. In contrast, intracerebroventricularly administered leptin caused contrasting effects on regional SNA in DIO mice. Renal SNA response to intracerebroventricular leptin was preserved, whereas lumbar and brown adipose tissue SNA responses were attenuated. Intact renal SNA response to leptin combined with the increased cerebrospinal fluid leptin levels in DIO mice represents a potential mechanism for the adverse cardiovascular consequences of obesity. Lastly, we examined the role of phosphoinositol-3 kinase (PI3K) and melanocortin receptors (MCR) in mediating the preserved renal SNA response to leptin in obesity. Presence of PI3K inhibitor (LY294002) or MC3/4R antagonist (SHU9119) significantly attenuated the renal SNA response to leptin in DIO and agouti obese mice. Our results demonstrate the importance of PI3K and melanocortin receptors in the transduction of leptin-induced renal sympathetic activation in obesity.


Nature Medicine | 2012

Abnormal development of NG2 + PDGFR-α + neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model

Calvin S. Carter; Timothy W. Vogel; Qihong Zhang; Seongjin Seo; Ruth E. Swiderski; Thomas O. Moninger; Martin D. Cassell; Daniel R. Thedens; Kim M. Keppler-Noreuil; Peggy Nopoulos; Darryl Y. Nishimura; Charles Searby; Kevin Bugge; Val C. Sheffield

Hydrocephalus is a common neurological disorder that leads to expansion of the cerebral ventricles and is associated with a high rate of morbidity and mortality. Most neonatal cases are of unknown etiology and are likely to have complex inheritance involving multiple genes and environmental factors. Identifying molecular mechanisms for neonatal hydrocephalus and developing noninvasive treatment modalities are high priorities. Here we use a hydrocephalic mouse model of the human ciliopathy Bardet-Biedl Syndrome (BBS) and identify a role for neural progenitors in the pathogenesis of neonatal hydrocephalus. We found that hydrocephalus in this mouse model is caused by aberrant platelet-derived growth factor receptor α (PDGFR-α) signaling, resulting in increased apoptosis and impaired proliferation of chondroitin sulfate proteoglycan 4 (also known as neuron-glial antigen 2 or NG2)+PDGFR-α+ neural progenitors. Targeting this pathway with lithium treatment rescued NG2+PDGFR-α+ progenitor cell proliferation in BBS mutant mice, reducing their ventricular volume. Our findings demonstrate that neural progenitors are crucial in the pathogenesis of neonatal hydrocephalus, and we identify new therapeutic targets for this common neurological disorder.


Investigative Radiology | 1991

AUTOMATED IDENTIFICATION OF LEFT VENTRICULAR BORDERS FROM SPIN-ECHO MAGNETIC RESONANCE IMAGES : EXPERIMENTAL AND CLINICAL FEASIBILITY STUDIES

Steven R. Fleagle; Daniel R. Thedens; James C. Ehrhardt; Thomas D. Scholz; David J. Skorton

Gated cardiac magnetic resonance imaging (MRI) permits detailed evaluation of cardiac anatomy, including the calculation of left ventricular volume and mass. Current methods of deriving this information, however, require manual tracing of boundaries in several images; such manual methods are tedious, time consuming, and subjective. The purpose of this study is to apply a new computerized method to automatically identify endocardial and epicardial borders in MRIs. The authors obtained serial, short-axis, spin-echo MRIs of 13 excised animal hearts. Also obtained were selected short-axis, spin-echo ventricular images of 11 normal human volunteers. A method of automated edge detection based on graph-searching principles was applied to the ex vivo and in vivo images. Endocardial and epicardial areas were used to compute left ventricular mass and were compared with the anatomic left ventricular mass for the images of excised hearts. The endocardial and epicardial areas calculated from computer-derived borders were compared with areas from observer tracing. There was very close correspondence between computer-derived and observer tracings for excised hearts (r = 0.97 for endocardium, r = 0.99 for epicardium) and in vivo scans (r = 0.92 for endocardium, r = 0.90 for epicardium). There also was a close correspondence between computer-generated and actual left ventricular mass in the excised hearts (r = 0.99). These data suggest the feasibility of automated edge detection in MRIs. Although further validation is needed, this method may prove useful in clinical MRI.


Diabetes | 2011

Neuronal Receptor Activity–Modifying Protein 1 Promotes Energy Expenditure in Mice

Zhongming Zhang; Xuebo Liu; Donald A. Morgan; Adisa Kuburas; Daniel R. Thedens; Andrew F. Russo; Kamal Rahmouni

OBJECTIVE Receptor activity–modifying proteins (RAMPs) 1, 2, and 3 are unusual accessory proteins that dictate the binding specificity of two G protein–coupled receptors involved in energy homeostasis: calcitonin gene–related peptide (CGRP) and amylin receptors. These proteins are expressed throughout the central nervous system (CNS), including in the brain regions involved in the regulation of energy homeostasis, but the significance of CNS RAMPs in the control of energy balance remains unknown. RESEARCH DESIGN AND METHODS To examine the functional significance of modulating neuronal RAMP1, we assessed the effect of overexpressing human RAMP1 (hRAMP1) in the CNS on body energy balance. RESULTS Nestin/hRAMP1 transgenic mice have a remarkably decreased body weight associated with reduced fat mass and circulating leptin levels. The transgenic mice exhibited higher energy expenditure as indicated by increased oxygen consumption, body temperature, and sympathetic tone subserving brown adipose tissue (BAT). Consistent with this, the nestin/hRAMP1 transgenic mice had elevated BAT mRNA levels of peroxisome proliferator–activated receptor γ coactivator 1α and uncoupling protein 1 and 3, and these changes can be reversed by chronic blockade of sympathetic nervous system signaling. Furthermore, metabolic response to amylin was enhanced in the nestin/hRAMP1 mice whereas the response to CGRP was blunted, possibly the result of higher expression of CGRP in the CNS. CONCLUSIONS These data demonstrate that CNS RAMP1 plays a pivotal role in the regulation of energy homeostasis by promoting energy expenditure.


International Journal of Cardiovascular Imaging | 2003

Segmentation of wall and plaque in in vitro vascular MR images.

Fuxing Yang; Gerhard A. Holzapfel; Christian A. J. Schulze-Bauer; Rudolf Stollberger; Daniel R. Thedens; Lizann Bolinger; Alan H. Stolpen; Milan Sonka

Atherosclerosis leads to heart attack and stroke, which are major killers in the western world. These cardiovascular events frequently result from local rupture of vulnerable atherosclerotic plaque. Non-invasive assessment of plaque vulnerability would dramatically change the way in which atherosclerotic disease is diagnosed, monitored, and treated. In this paper, we report a computerized method for segmentation of arterial wall layers and plaque from high-resolution volumetric MR images. The method uses dynamic programming to detect optimal borders in each MRI frame. The accuracy of the results was tested in 62 T1-weighted MR images from six vessel specimens in comparison to borders manually determined by an expert observer. The mean signed border positioning errors for the lumen, internal elastic lamina, and external elastic lamina borders were −0.1 ± 0.1, 0.0 ± 0.1, and −0.1 ± 0.1 mm, respectively. The presented wall layer segmentation approach is one of the first steps towards non-invasive assessment of plaque vulnerability in atherosclerotic subjects.

Collaboration


Dive into the Daniel R. Thedens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric A. Hoffman

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge