Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Rakiec is active.

Publication


Featured researches published by Daniel Rakiec.


Nature Medicine | 2014

Pharmacological and genomic profiling identifies NF-κB–targeted treatment strategies for mantle cell lymphoma

Rami Rahal; Mareike Frick; Rodrigo Romero; Joshua Korn; Robert Kridel; Fong Chun Chan; Barbara Meissner; Hyo-eun C. Bhang; Dave Ruddy; Audrey Kauffmann; Ali Farsidjani; Adnan Derti; Daniel Rakiec; Tara L. Naylor; Estelle Pfister; Steve Kovats; Sunkyu Kim; Kerstin Dietze; Bernd Dörken; Christian Steidl; Alexandar Tzankov; Michael Hummel; John E. Monahan; Michael Morrissey; Christine Fritsch; William R. Sellers; Vesselina G. Cooke; Randy D. Gascoyne; Georg Lenz; Frank Stegmeier

Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR–NF-κB or NIK–NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway–targeted agents.


Nature Medicine | 2015

Studying clonal dynamics in response to cancer therapy using high-complexity barcoding

Hyo-eun C. Bhang; David A. Ruddy; Viveksagar Krishnamurthy Radhakrishna; Justina X. Caushi; Rui Zhao; Matthew M Hims; Angad P. Singh; Iris Kao; Daniel Rakiec; Pamela Shaw; Marissa Balak; Alina Raza; Elizabeth Ackley; Nicholas Keen; Michael R. Schlabach; Michael Palmer; Rebecca J. Leary; Derek Y. Chiang; William R. Sellers; Franziska Michor; Vesselina G. Cooke; Joshua Korn; Frank Stegmeier

Resistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing. To address this, we developed a high-complexity barcode library, ClonTracer, which enables the high-resolution tracking of more than 1 million cancer cells under drug treatment. In two clinically relevant models, ClonTracer studies showed that the majority of resistant clones were part of small, pre-existing subpopulations that selectively escaped under therapeutic challenge. Moreover, the ClonTracer approach enabled quantitative assessment of the ability of combination treatments to suppress resistant clones. These findings suggest that resistant clones are present before treatment, which would make up-front therapeutic combinations that target non-overlapping resistance a preferred approach. Thus, ClonTracer barcoding may be a valuable tool for optimizing therapeutic regimens with the goal of curative combination therapies for cancer.


Cancer Discovery | 2016

CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions

Diana M Munoz; Pamela J. Cassiani; Li Li; Eric Billy; Joshua Korn; Michael D. Jones; Javad Golji; David A. Ruddy; Kristine Yu; Gregory McAllister; Antoine deWeck; Dorothee Abramowski; Jessica Wan; Matthew D. Shirley; Sarah Y. Neshat; Daniel Rakiec; Rosalie de Beaumont; Odile Weber; Audrey Kauffmann; E. Robert McDonald; Nicholas Keen; Francesco Hofmann; William R. Sellers; Tobias Schmelzle; Frank Stegmeier; Michael R. Schlabach

UNLABELLED CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation. However, in two aneuploid cancer models, we found that all genes within highly amplified regions, including nonexpressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits. In addition, using a CRISPR tiling screen, we found that sgRNAs targeting essential domains generate the strongest lethality phenotypes and thus provide a strategy to rapidly define the protein domains required for cancer dependence. Collectively, these findings not only demonstrate the utility of CRISPR screens in the identification of cancer-essential genes, but also reveal the need to carefully control for false-positive results in chromosomally unstable cancer lines. SIGNIFICANCE We show in this study that CRISPR-based screens have a significantly lower false-negative rate compared with RNAi-based screens, but have specific liabilities particularly in the interrogation of regions of genome amplification. Therefore, this study provides critical insights for applying CRISPR-based screens toward the systematic identification of new cancer targets. Cancer Discov; 6(8); 900-13. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Aguirre et al., p. 914This article is highlighted in the In This Issue feature, p. 803.


Cancer Research | 2015

A Chemical Genetics Approach for the Functional Assessment of Novel Cancer Genes

Qianhe Zhou; Adnan Derti; David A. Ruddy; Daniel Rakiec; Iris Kao; Michelle Lira; Veronica Gibaja; Homan Chan; Yi Yang; Junxia Min; Michael R. Schlabach; Frank Stegmeier

Assessing the functional significance of novel putative oncogenes remains a significant challenge given the limitations of current loss-of-function tools. Here, we describe a method that employs TALEN or CRISPR/Cas9-mediated knock-in of inducible degron tags (Degron-KI) that provides a versatile approach for the functional characterization of novel cancer genes and addresses many of the shortcomings of current tools. The Degron-KI system allows for highly specific, inducible, and allele-targeted inhibition of endogenous protein function, and the ability to titrate protein depletion with this system is able to better mimic pharmacologic inhibition compared with RNAi or genetic knockout approaches. The Degron-KI system was able to faithfully recapitulate the effects of pharmacologic EZH2 and PI3Kα inhibitors in cancer cell lines. The application of this system to the study of a poorly understood putative oncogene, SF3B1, provided the first causal link between SF3B1 hotspot mutations and splicing alterations. Surprisingly, we found that SF3B1-mutant cells are not dependent upon the mutated allele for in vitro growth, but instead depend upon the function of the remaining wild-type alleles. Collectively, these results demonstrate the broad utility of the Degron-KI system for the functional characterization of cancer genes.


Cancer Discovery | 2015

FGFR-Mediated Reactivation of MAPK Signaling Attenuates Antitumor Effects of Imatinib in Gastrointestinal Stromal Tumors

Fang Li; Hung Huynh; Xiaoyan Li; David A. Ruddy; Youzhen Wang; Richard Ong; Pierce K. H. Chow; Shumei Qiu; Angela Tam; Daniel Rakiec; Robert Schlegel; John E. Monahan; Alan Huang

UNLABELLED Activating mutations in either KIT or PDGFRA are present in approximately 90% of gastrointestinal stromal tumors (GIST). Although treatment with the KIT and PDGFR inhibitor imatinib can control advanced disease in about 80% of GIST patients, the beneficial effect is not durable. Here, we report that ligands from the FGF family reduced the effectiveness of imatinib in GIST cells, and FGF2 and FGFR1 are highly expressed in all primary GIST samples examined. The combination of KIT and FGFR inhibition showed increased growth inhibition in imatinib-sensitive GIST cell lines and improved efficacy in patient-derived GIST xenografts. In addition, inhibition of MAPK signaling by imatinib was not sustained in GIST cells. An ERK rebound occurred through activation of FGF signaling, and was repressed by FGFR1 inhibition. Downregulation of Sprouty proteins played a role in the imatinib-induced feedback activation of FGF signaling in GIST cells. SIGNIFICANCE We here show that FGFR-mediated reactivation of the MAPK pathway attenuates the antiproliferation effects of imatinib in GISTs. The imatinib-induced ERK rebound can be repressed by the FGFR inhibitor BGJ398, and combined KIT and FGFR inhibition leads to increased efficacy in vitro and in patient-derived xenografts.


Cancer Research | 2015

Inhibition of casein kinase 1 alpha prevents acquired drug resistance to erlotinib in EGFR-mutant non-small cell lung cancer

Alexandra B. Lantermann; Dongshu Chen; Kaitlin J McCutcheon; Gregory R. Hoffman; Elizabeth Frias; David A. Ruddy; Daniel Rakiec; Joshua Korn; Gregory McAllister; Frank Stegmeier; Matthew John Meyer; Sreenath V. Sharma

Patients with lung tumors harboring activating mutations in the EGF receptor (EGFR) show good initial treatment responses to the EGFR tyrosine kinase inhibitors (TKI) erlotinib or gefitinib. However, acquired resistance invariably develops. Applying a focused shRNA screening approach to identify genes whose knockdown can prevent and/or overcome acquired resistance to erlotinib in several EGFR-mutant non-small cell lung cancer (NSCLC) cell lines, we identified casein kinase 1 α (CSNK1A1, CK1α). We found that CK1α suppression inhibits the NF-κB prosurvival signaling pathway. Furthermore, downregulation of NF-κB signaling by approaches independent of CK1α knockdown can also attenuate acquired erlotinib resistance, supporting a role for activated NF-κB signaling in conferring acquired drug resistance. Importantly, CK1α suppression prevented erlotinib resistance in an HCC827 xenograft model in vivo. Our findings suggest that patients with EGFR-mutant NSCLC might benefit from a combination of EGFR TKIs and CK1α inhibition to prevent acquired drug resistance and to prolong disease-free survival.


eLife | 2017

Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models

Hui Qin Wang; Ensar Halilovic; Xiaoyan Li; Jinsheng Liang; Yichen Cao; Daniel Rakiec; David A. Ruddy; Sébastien Jeay; Jens Wuerthner; Noelito Timple; Shailaja Kasibhatla; Nanxin Li; Juliet Williams; William R. Sellers; Alan Huang; Fang Li

The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI: http://dx.doi.org/10.7554/eLife.17137.001


Molecular Cancer Research | 2017

BRAF-inhibitor associated MEK Mutations Increase RAF-dependent and-independent Enzymatic Activity

Caroline Emery; Kelli-Ann Monaco; Ping Wang; Marissa Balak; Alyson K Freeman; Jodi Meltzer; Scott Delach; Daniel Rakiec; David A. Ruddy; Joshua Korn; Jacob R. Haling; Michael G. Acker; Giordano Caponigro

Alterations in MEK1/2 occur in cancers, both in the treatment-naïve state and following targeted therapies, most notably BRAF and MEK inhibitors in BRAF-V600E–mutant melanoma and colorectal cancer. Efforts were undertaken to understand the effects of these mutations, based upon protein structural location, and MEK1/2 activity. Two categories of MEK1/2 alterations were evaluated, those associated with either the allosteric pocket or helix-A. Clinically, MEK1/2 alterations of the allosteric pocket are rare and we demonstrate that they confer resistance to MEK inhibitors, while retaining sensitivity to BRAF inhibition. Most mutations described in patients fall within, or are associated with, helix-A. Mutations in this region reduce sensitivity to both BRAF and MEK inhibition and display elevated phospho-ERK1/2 levels, independent from increases in phospho-MEK1/2. Biochemical experiments with a representative helix-A variant, MEK1-Q56P, reveal both increased catalytic efficiency of the activated enzyme, and phosphorylation-independent activity relative to wild-type MEK1. Consistent with these findings, MEK1/2 alterations in helix A retain sensitivity to downstream antagonism via pharmacologic inhibition of ERK1/2. This work highlights the importance of classifying mutations based on structural and phenotypic consequences, both in terms of pathway signaling output and response to pharmacologic inhibition. Implications: This study suggests that alternate modes of target inhibition, such as ERK inhibition, will be required to effectively treat tumors harboring these MEK1/2-resistant alleles. Mol Cancer Res; 15(10); 1431–44. ©2017 AACR.


Cancer Research | 2015

Abstract 2847: High complexity barcoding to study clonal dynamics in response to cancer therapy

Hyo-eun C. Bhang; David A. Ruddy; Viveksagar Krishnamurthy Radhakrishna; Rui Zhao; Iris Kao; Daniel Rakiec; Pamela Shaw; Marissa Balak; Justina X. Caushi; Elizabeth Ackley; Nicholas Keen; Michael R. Schlabach; Michael Palmer; William R. Sellers; Franziska Michor; Vesselina G. Cooke; Joshua Korn; Frank Stegmeier

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA Targeted therapies, such as erlotinib and imatinib, lead to dramatic clinical responses, but the emergence of resistance presents a significant challenge. Recent studies have revealed intratumoral heterogeneity as a potential source for the emergence of therapeutic resistance. However, it is still unclear if relapse/resistance is driven predominantly by pre-existing or de novo acquired alterations. To address this question, we developed a high-complexity barcode library, ClonTracer, which contains over 27 million unique DNA barcodes and thus enables the high resolution tracking of cancer cells under drug treatment. Using this library in two clinically relevant resistance models, we demonstrate that the majority of resistant clones pre-exist as rare subpopulations that become selected in response to therapeutic challenge. Furthermore, our data provide direct evidence that both genetic and non-genetic resistance mechanisms pre-exist in cancer cell populations. The ClonTracer barcoding strategy, together with mathematical modeling, enabled us to quantitatively dissect the frequency of drug-resistant subpopulations and evaluate the impact of combination treatments on the clonal complexity of these cancer models. Hence, monitoring of clonal diversity in drug-resistant cell populations by the ClonTracer barcoding strategy described here may provide a valuable tool to optimize therapeutic regimens towards the goal of curative cancer therapies. Citation Format: Hyo-eun C. Bhang, David A. Ruddy, Viveksagar Krishnamurthy Radhakrishna, Rui Zhao, Iris Kao, Daniel Rakiec, Pamela Shaw, Marissa Balak, Justina X. Caushi, Elizabeth Ackley, Nicholas Keen, Michael R. Schlabach, Michael Palmer, William R. Sellers, Franziska Michor, Vesselina G. Cooke, Joshua M. Korn, Frank Stegmeier. High complexity barcoding to study clonal dynamics in response to cancer therapy. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2847. doi:10.1158/1538-7445.AM2015-2847


Cancer Discovery | 2013

An F876L Mutation in Androgen Receptor Confers Genetic and Phenotypic Resistance to MDV3100 (Enzalutamide)

Manav Korpal; Joshua Korn; Xueliang Gao; Daniel Rakiec; David A. Ruddy; Shivang Doshi; Jing Yuan; Steve Kovats; Sunkyu Kim; Vesselina G. Cooke; John E. Monahan; Frank Stegmeier; Thomas M. Roberts; William R. Sellers; Wenlai Zhou; Ping Zhu

Collaboration


Dive into the Daniel Rakiec's collaboration.

Researchain Logo
Decentralizing Knowledge