Daniel Rico
Newcastle University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Rico.
Journal of Immunology | 2010
Juan-Carlos Rodríguez-Prados; Paqui G. Través; Jimena Cuenca; Daniel Rico; Julián Aragonés; Marta Cascante; Lisardo Boscá
Macrophages play a relevant role in innate and adaptive immunity depending on the balance of the stimuli received. From an analytical and functional point of view, macrophage stimulation can be segregated into three main modes, as follows: innate, classic, and alternative pathways. These differential activations result in the expression of specific sets of genes involved in the release of pro- or anti-inflammatory stimuli. In the present work, we have analyzed whether specific metabolic patterns depend on the signaling pathway activated. A [1,2-13C2]glucose tracer-based metabolomics approach has been used to characterize the metabolic flux distributions in macrophages stimulated through the classic, innate, and alternative pathways. Using this methodology combined with mass isotopomer distribution analysis of the new formed metabolites, the data show that activated macrophages are essentially glycolytic cells, and a clear cutoff between the classic/innate activation and the alternative pathway exists. Interestingly, macrophage activation through LPS/IFN-γ or TLR-2, -3, -4, and -9 results in similar flux distribution patterns regardless of the pathway activated. However, stimulation through the alternative pathway has minor metabolic effects. The molecular basis of the differences between these two types of behavior involves a switch in the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) from the liver type-PFK2 to the more active ubiquitous PFK2 isoenzyme, which responds to Hif-1α activation and increases fructose-2,6-bisphosphate concentration and the glycolytic flux. However, using macrophages targeted for Hif-1α, the switch of PFK2 isoenzymes still occurs in LPS/IFN-γ–activated macrophages, suggesting that this pathway regulates ubiquitous PFK2 expression through Hif-1α-independent mechanisms.
Nature Genetics | 2012
Marta Kulis; Simon Heath; Marina Bibikova; Ana C. Queirós; Alba Navarro; Guillem Clot; Alejandra Martínez-Trillos; Giancarlo Castellano; Isabelle Brun-Heath; Magda Pinyol; Sergio Barberán-Soler; Panagiotis Papasaikas; Pedro Jares; Sílvia Beà; Daniel Rico; Simone Ecker; Miriam Rubio; Romina Royo; Vincent T. Ho; Brandy Klotzle; Lluis Hernández; Laura Conde; Mónica López-Guerra; Dolors Colomer; Neus Villamor; Marta Aymerich; María Rozman; Mònica Bayés; Marta Gut; Josep Lluís Gelpí
We have extensively characterized the DNA methylomes of 139 patients with chronic lymphocytic leukemia (CLL) with mutated or unmutated IGHV and of several mature B-cell subpopulations through the use of whole-genome bisulfite sequencing and high-density microarrays. The two molecular subtypes of CLL have differing DNA methylomes that seem to represent epigenetic imprints from distinct normal B-cell subpopulations. DNA hypomethylation in the gene body, targeting mostly enhancer sites, was the most frequent difference between naive and memory B cells and between the two molecular subtypes of CLL and normal B cells. Although DNA methylation and gene expression were poorly correlated, we identified gene-body CpG dinucleotides whose methylation was positively or negatively associated with expression. We have also recognized a DNA methylation signature that distinguishes new clinico-biological subtypes of CLL. We propose an epigenomic scenario in which differential methylation in the gene body may have functional and clinical implications in leukemogenesis.
Nature Genetics | 2013
Cristina Balbás-Martínez; Ana Sagrera; Enrique Carrillo-de-Santa-Pau; Julie Earl; Mirari Marquez; Miguel Vazquez; Eleonora Lapi; Francesc Castro-Giner; Sergi Beltran; Mònica Bayés; Alfredo Carrato; Juan C. Cigudosa; Orlando Domínguez; Marta Gut; Jesús Herranz; Nuria Juanpere; Manolis Kogevinas; Xavier Langa; Elena Lopez-Knowles; José A. Lorente; Josep Lloreta; David G. Pisano; Laia Richart; Daniel Rico; Rocío Salgado; Adonina Tardón; Stephen J. Chanock; Simon Heath; Alfonso Valencia; Ana Losada
Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological and genetic levels. Tumor invasiveness (T) and grade (G) are the main factors associated with outcome and determine patient management. A discovery exome sequencing screen (n = 17), followed by a prevalence screen (n = 60), identified new genes mutated in this tumor coding for proteins involved in chromatin modification (MLL2, ASXL2 and BPTF), cell division (STAG2, SMC1A and SMC1B) and DNA repair (ATM, ERCC2 and FANCA). STAG2, a subunit of cohesin, was significantly and commonly mutated or lost in UBC, mainly in tumors of low stage or grade, and its loss was associated with improved outcome. Loss of expression was often observed in chromosomally stable tumors, and STAG2 knockdown in bladder cancer cells did not increase aneuploidy. STAG2 reintroduction in non-expressing cells led to reduced colony formation. Our findings indicate that STAG2 is a new UBC tumor suppressor acting through mechanisms that are different from its role in preventing aneuploidy.
Genome Research | 2014
Pedro G. Ferreira; Pedro Jares; Daniel Rico; Gonzalo Gómez-López; Alejandra Martínez-Trillos; Neus Villamor; Simone Ecker; Abel Gonzalez-Perez; David G. Knowles; Jean Monlong; Rory Johnson; Víctor Quesada; Sarah Djebali; Panagiotis Papasaikas; Mónica López-Guerra; Dolors Colomer; Cristina Royo; Maite Cazorla; Magda Pinyol; Guillem Clot; Marta Aymerich; María Rozman; Marta Kulis; David Tamborero; Anaı̈s Gouin; Julie Blanc; Marta Gut; Ivo Gut; Xose S. Puente; David G. Pisano
Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.
American Journal of Human Genetics | 2010
Benjamín Rodríguez-Santiago; Núria Malats; Nathaniel Rothman; Lluís Armengol; M Garcia-Closas; Manolis Kogevinas; Olaya Villa; Amy Hutchinson; Julie Earl; Gaëlle Marenne; Kevin B. Jacobs; Daniel Rico; Adonina Tardón; Alfredo Carrato; Gilles Thomas; Alfonso Valencia; Debra T. Silverman; Francisco X. Real; Stephen J. Chanock; Luis A. Pérez-Jurado
Mosaicism is defined as the coexistence of cells with different genetic composition within an individual, caused by postzygotic somatic mutation. Although somatic mosaicism for chromosomal abnormalities is a well-established cause of developmental and somatic disorders and has also been detected in different tissues, its frequency and extent in the adult normal population are still unknown. We provide here a genome-wide survey of mosaic genomic variation obtained by analyzing Illumina 1M SNP array data from blood or buccal DNA samples of 1991 adult individuals from the Spanish Bladder Cancer/EPICURO genome-wide association study. We found mosaic abnormalities in autosomes in 1.7% of samples, including 23 segmental uniparental disomies, 8 complete trisomies, and 11 large (1.5-37 Mb) copy-number variants. Alterations were observed across the different autosomes with recurrent events in chromosomes 9 and 20. No case-control differences were found in the frequency of events or the percentage of cells affected, thus indicating that most rearrangements found are not central to the development of bladder cancer. However, five out of six events tested were detected in both blood and bladder tissue from the same individual, indicating an early developmental origin. The high cellular frequency of the anomalies detected and their presence in normal adult individuals suggest that this type of mosaicism is a widespread phenomenon in the human genome. Somatic mosaicism should be considered in the expanding repertoire of inter- and intraindividual genetic variation, some of which may cause somatic human diseases but also contribute to modifying inherited disorders and/or late-onset multifactorial traits.
Cell | 2016
William Astle; Heather Elding; Tao Jiang; Dave Allen; Dace Ruklisa; Alice L. Mann; Daniel Mead; Heleen Bouman; Fernando Riveros-Mckay; Myrto Kostadima; John J. Lambourne; Suthesh Sivapalaratnam; Kate Downes; Kousik Kundu; Lorenzo Bomba; Kim Berentsen; John R. Bradley; Louise C. Daugherty; Olivier Delaneau; Kathleen Freson; Stephen F. Garner; Luigi Grassi; Jose A. Guerrero; Matthias Haimel; Eva M. Janssen-Megens; Anita M. Kaan; Mihir Anant Kamat; Bowon Kim; Amit Mandoli; Jonathan Marchini
Summary Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.
Nature Genetics | 2015
Marta Kulis; Angelika Merkel; Simon Heath; Ana C. Queirós; Ronald Schuyler; Giancarlo Castellano; Renée Beekman; Emanuele Raineri; Anna Esteve; Guillem Clot; Néria Verdaguer-Dot; Martí Duran-Ferrer; Nuria Russiñol; Roser Vilarrasa-Blasi; Simone Ecker; Vera Pancaldi; Daniel Rico; Lidia Agueda; Julie Blanc; David C. Richardson; Laura Clarke; Avik Datta; Marien Pascual; Xabier Agirre; Felipe Prosper; Diego Alignani; Bruno Paiva; Gersende Caron; Thierry Fest; Marcus O. Muench
We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.
Cell | 2016
Lu Chen; Bing Ge; Francesco Paolo Casale; Louella Vasquez; Tony Kwan; Diego Garrido-Martín; Stephen Watt; Ying Yan; Kousik Kundu; Simone Ecker; Avik Datta; David C. Richardson; Frances Burden; Daniel Mead; Alice L. Mann; José María Fernández; Sophia Rowlston; Steven P. Wilder; Samantha Farrow; Xiaojian Shao; John J. Lambourne; Adriana Redensek; Cornelis A. Albers; Vyacheslav Amstislavskiy; Sofie Ashford; Kim Berentsen; Lorenzo Bomba; Guillaume Bourque; David Bujold; Stephan Busche
Summary Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.
PLOS ONE | 2007
Silvia Díaz; Francisco Amaro; Daniel Rico; Virginia Campos; Laura Benítez; Ana Martín-González; Eileen P. Hamilton; Eduardo Orias; Juan Carlos Gutiérrez
Background Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. Methodology/Principal Findings We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals) brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3′ UTR of the MTT5 mRNA with potential regulatory activity is reported. Conclusion/Significance The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Vanessa Núñez; Daniel Alameda; Daniel Rico; Rubén Mota; Pilar Gonzalo; Marta Cedenilla; Thierry Fischer; Lisardo Boscá; Christopher K. Glass; Alicia G. Arroyo; Mercedes Ricote
The retinoid X receptor α (RXRα) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRα regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRα in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRα plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.