Daniel Rost
Ludwig Maximilian University of Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Rost.
Archive | 1998
Peter Gaenssler; Daniel Rost; Klaus Ziegler
We consider function-indexed so-called Random Measure Processes (RMP’s) and focus especially on a uniform law of large numbers (ULLN) for RMP’s. Demonstrating both its power and its generality we apply it to derive a ULLN for smoothed empirical processes covering a former result by Yukich (1989). Finally we also present a functional central limit theorem (FCLT) for smoothed empirical processes under conditions different from those found in the literature.
Archive | 2014
Leonhard Riedl; Daniel Rost; Erwin Schörner
In folgendem Artikel sollen Struktur und Charakter, Adressaten, Inhalte sowie zentrale Ziele des Bruckenkurses fur Studierende des Lehramts an Grund-, Haupt- oder Realschulen der Ludwig-Maximilians-Universitat Munchen geschildert werden. Das Hauptaugenmerk liegt dabei auf den Inhalten des Kursszenarios, welche anhand von ausgewahlten Beispielaufgaben thematisiert werden. Ein abschliesendes Resumee kommentiert den Gesamteindruck des Kurses und bietet in einem Ausblick Vorschlage zur Optimierung des Angebots.
Archive | 2000
Peter Gaenssler; Daniel Rost
We consider function-indexed smoothed empirical measures on linear metric spaces and focus on uniform laws of large numbers (ULLN) comparable with Glivenko-Cantelli results in the non-smoothed case. Using the random measure process approach we are able to give a set of sufficient conditions for a ULLN which are different from the ones known in the literature and are more close to being necessary.
Archive | 2003
Peter Gaenssler; Daniel Rost
Based on a uniform functional central limit theorem (FCLT) for unbiased smoothed empirical processes indexed by a class.F of measurable functions defined on a linear metric space we present a consistency theorem for smoothed bootstrapped empirical processes. Our approach and the results are comparable with those in Gine and Zinn [8], and Gine [10], respectively, in the case of empirical processes; especially, our Theorem 2.2 below is comparable with the main result stated as Theorem 2.3 in Gine and Zinn [8].
Metrika | 1997
Daniel Rost
AbstractLetηn,n ∈ ℕ, be arbitrary functions defined on a probability space (ω,A,P) with values in a normed vector spaceB1,μ ∈ B1 andξ0 a separable random element inB1 such thatξn:=√n(ηn−μ) converges weakly toξ0 in the sense of Hoffmann-Jørgensen. Then with (B2, ∥·∥2) being another normed vector space andφ:B1→B2 compactly differentiable atμ with derivateDμ, the random variable
Journal of Theoretical Probability | 1996
Daniel Rost; Christian Wieckenberg
Results in Mathematics | 2007
Peter Gaenssler; Péter K. Molnár; Daniel Rost
\parallel \sqrt n (\phi (n_n ) - \phi (\mu )) - D_\mu (\sqrt n (n_n - \mu ))\parallel 2*
Archive | 2013
Leonhard Riedl; Daniel Rost; Erwin Schörner
Archive | 2012
Leonhard Riedl; Daniel Rost; Erwin Schörner
converges to 0P-stochastically where “*” denotes the measurable cover. We show that the classicalδ — method extends to the non-measurable case where in the proof we shall not make use of any representation theorems but only of a slight refinement of the usual characterisation of compact differentiability, due to the fact that we will not assume {ξn:n ∈ ℕ} being tight.
Metrika | 2012
Hans Schneeweiss; Daniel Rost; Matthias Schmid
AbstractThis paper establishes the representation of the generalizedN-dimensional Wasserstein distance (Kantorovich-Functional)