Daniel Růžek
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Růžek.
Virology | 2009
Daniel Růžek; Jiří Salát; Martin Palus; Tamara S. Gritsun; Ernest A. Gould; Iva Dyková; Anna Skallová; Jiří Jelínek; Jan Kopecký; Libor Grubhoffer
Epidemics of tick-borne encephalitis involving thousands of humans occur annually in the forested regions of Europe and Asia. Despite the importance of this disease, the underlying basis for the development of encephalitis remains undefined. Here, we prove the key role of CD8(+) T-cells in the immunopathology of tick-borne encephalitis, as demonstrated by prolonged survival of SCID or CD8(-/-) mice, following infection, when compared with immunocompetent mice or mice with adoptively transferred CD8(+) T-cells. The results imply that tick-borne encephalitis is an immunopathological disease and that the inflammatory reaction significantly contributes to the fatal outcome of the infection.
Travel Medicine and Infectious Disease | 2010
Daniel Růžek; Gerhard Dobler; Oliver Donoso Mantke
Tick-borne encephalitis (TBE) is an important and severe neurological illness occurring in large areas of Europe and northern Asia. Only a small proportion of those infected develop clinical symptoms. The symptomatic cases are, however, characterized with fevers and debilitating encephalitis that might progress into chronic disease or fatal infections. This review summarizes data on clinical presentation, pathogenesis and pathology of TBE in humans, and of experimental TBE in animal models with the purpose to explain why is TBE such a severe disease clinically.
PLOS ONE | 2011
Daniel Růžek; Jiří Salát; Sunit K. Singh; Jan Kopecký
Tick-borne encephalitis (TBE) virus causes severe encephalitis with serious sequelae in humans. The disease is characterized by fever and debilitating encephalitis that can progress to chronic illness or fatal infection. In this study, changes in permeability of the blood-brain barrier (BBB) in two susceptible animal models (BALB/c, and C57Bl/6 mice) infected with TBE virus were investigated at various days after infection by measuring fluorescence in brain homogenates after intraperitoneal injection of sodium fluorescein, a compound that is normally excluded from the central nervous system. We demonstrate here that TBE virus infection, in addition to causing fatal encephalitis in mice, induces considerable breakdown of the BBB. The permeability of the BBB increased at later stages of TBE infection when high virus load was present in the brain (i.e., BBB breakdown was not necessary for TBE virus entry into the brain), and at the onset of the first severe clinical symptoms of the disease, which included neurological signs associated with sharp declines in body weight and temperature. The increased BBB permeability was in association with dramatic upregulation of proinflammatory cytokine/chemokine mRNA expression in the brain. Breakdown of the BBB was also observed in mice deficient in CD8+ T-cells, indicating that these cells are not necessary for the increase in BBB permeability that occurs during TBE. These novel findings are highly relevant to the development of future therapies designed to control this important human infectious disease.
Microbes and Infection | 2011
Salini Krishnan Unni; Daniel Růžek; Chintan Chhatbar; Ritu Mishra; Manish K. Johri; Sunit K. Singh
Japanese encephalitis virus (JEV) is an arbovirus belonging to the family Flaviviridae. It is maintained in a zoonotic cycle involving pigs, ardeid birds and Culex species of mosquitoes. Humans are accidental/dead end hosts of JEV infection because they cannot sustain high viral titers. Factors affecting the clinical manifestations and pathogenesis of JEV infection are not well understood. Though, vaccines are currently available against JEV, it has to be further improved. Here we review the literature on the JEV life cycle, pathogenesis and host immune responses to JEV infection.
Vector-borne and Zoonotic Diseases | 2011
Katharina Achazi; Daniel Růžek; Oliver Donoso-Mantke; Mathias Schlegel; Hanan Sheikh Ali; Mathias Wenk; Jonas Schmidt-Chanasit; Lutz Ohlmeyer; Ferdinand Rühe; Torsten Vor; Christian Kiffner; René Kallies; Rainer G. Ulrich; Matthias Niedrig
INTRODUCTION Tick-borne encephalitis virus (TBEV) causes one of the most important flavivirus infections of the central nervous system, affecting humans in Europe and Asia. It is mainly transmitted by the bite of an infected tick and circulates among them and their vertebrate hosts. Until now, TBE risk analysis in Germany has been based on the incidence of human cases. Because of an increasing vaccination rate, this approach might be misleading, especially in regions of low virus circulation. METHOD To test the suitability of rodents as a surrogate marker for virus spread, laboratory-bred Microtus arvalis voles were experimentally infected with TBEV and analyzed over a period of 100 days by real-time (RT)-quantitative polymerase chain reaction. Further, the prevalence of TBEV in rodents trapped in Brandenburg, a rural federal state in northeastern Germany with autochthonous TBE cases, was determined and compared with that in rodents from German TBE risk areas as well as TBE nonrisk areas. RESULTS In experimentally infected M. arvalis voles, TBEV was detectable in different organs for at least 3 months and in blood for 1 month. Ten percent of all rodents investigated were positive for TBEV. However, in TBE risk areas, the infection rate was higher compared with that of areas with only single human cases or of nonrisk areas. TBEV was detected in six rodent species: Apodemus agrarius, Apodemus flavicollis, Apodemus sylvaticus, Microtus agrestis, Microtus arvalis, and Myodes glareolus. M. glareolus showed a high infection rate in all areas investigated. DISCUSSION AND CONCLUSION The infection experiments proved that TBEV can be reliably detected in infected M. arvalis voles. These voles developed a persistent TBE infection without clinical symptoms. Further, the study showed that rodents, especially M. glareolus, are promising sentinels particularly in areas of low TBEV circulation.
Virology | 2008
Daniel Růžek; Tamara S. Gritsun; Naomi L. Forrester; Ernest A. Gould; Jan Kopecký; Maryna Golovchenko; Nataliia Rudenko; Libor Grubhoffer
An attenuated strain (263) of the tick-borne encephalitis virus, isolated from field ticks, was either serially subcultured, 5 times in mice, or at 40 degrees C in PS cells, producing 2 independent strains, 263-m5 and 263-TR with identical genomes; both strains exhibited increased plaque size, neuroinvasiveness and temperature-resistance. Sequencing revealed two unique amino acid substitutions, one mapping close to the catalytic site of the viral protease. These observations imply that virus adaptation from ticks to mammals occurs by selection of pre-existing virulent variants from the quasispecies population rather than by the emergence of new random mutations. The significance of these observations is discussed.
Journal of Neuroinflammation | 2013
Martin Palus; Jarmila Vojtíšková; Jiří Salát; Jan Kopecký; Libor Grubhoffer; Marie Lipoldová; Peter Demant; Daniel Růžek
BackgroundThe clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown.MethodsTBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection.ResultsAn animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain.ConclusionsOur data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
Virus Research | 2008
Daniel Růžek; Lesley Bell-Sakyi; Jan Kopecký; Libor Grubhoffer
We undertook a comparative study of the susceptibility of different tick cell lines to infection with the European subtype of tick-borne encephalitis virus (TBEV), prototype strain Neudoerfl. The growth of TBEV was investigated in lines derived from vector Ixodes ricinus L. ticks (IRE/CTVM18, 19, and 20), as well as non-vector ticks, namely Ixodes scapularis Say (IDE2), Boophilus microplus Canestrini (BME/CTVM2), Hyalomma anatolicum anatolicum Koch (HAE/CTVM9), Rhipicephalus appendiculatus Neumann (RA-257) and recently established and herein described lines from the argasid tick Ornithodoros moubata Murray (OME/CTVM21 and 22). All the tick cell lines tested were susceptible to infection by TBEV and the virus caused productive infection without any cytopathic effect. However, there was a clear difference between the TBEV growth in vector and non-vector cell lines, since I. ricinus cell lines produced 100-1000-fold higher virus yield than the non-vector cell lines. The lowest virus production was observed in O. moubata and R. appendiculatus cell lines.
Journal of General Virology | 2014
Martin Palus; Tomáš Bílý; Jana Elsterová; Helena Langhansová; Jiří Salát; Marie Vancová; Daniel Růžek
Tick-borne encephalitis (TBE), a disease caused by tick-borne encephalitis virus (TBEV), represents the most important flaviviral neural infection in Europe and north-eastern Asia. In the central nervous system (CNS), neurons are the primary target for TBEV infection; however, infection of non-neuronal CNS cells, such as astrocytes, is not well understood. In this study, we investigated the interaction between TBEV and primary human astrocytes. We report for the first time, to the best of our knowledge, that primary human astrocytes are sensitive to TBEV infection, although the infection did not affect their viability. The infection induced a marked increase in the expression of glial fibrillary acidic protein, a marker of astrocyte activation. In addition, expression of matrix metalloproteinase 9 and several key pro-inflammatory cytokines/chemokines (e.g. tumour necrosis factor α, interferon α, interleukin (IL)-1β, IL-6, IL-8, interferon γ-induced protein 10, macrophage inflammatory protein, but not monocyte chemotactic protein 1) was upregulated. Moreover, we present a detailed description of morphological changes in TBEV-infected cells, as investigated using three-dimensional electron tomography. Several novel ultrastructural changes were observed, including the formation of unique tubule-like structures of 17.9 ±0.15 nm diameter with associated viral particles and/or virus-induced vesicles and located in the rough endoplasmic reticulum of the TBEV-infected cells. This is the first demonstration that TBEV infection activates primary human astrocytes. The infected astrocytes might be a potential source of pro-inflammatory cytokines in the TBEV-infected brain, and might contribute to the TBEV-induced neurotoxicity and blood-brain barrier breakdown that occurs during TBE. The neuropathological significance of our observations is also discussed.
Parasites & Vectors | 2015
Sabine Weisheit; Margarita Villar; Hana Tykalová; Marina Popara; Julia Loecherbach; Mick Watson; Daniel Růžek; Libor Grubhoffer; José de la Fuente; John K. Fazakerley; Lesley Bell-Sakyi
BackgroundIxodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed.MethodsRNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV).ResultsDifferential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway.ConclusionsThis systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.