Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel S. Kessler is active.

Publication


Featured researches published by Daniel S. Kessler.


Molecular and Cellular Biology | 1990

Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta interferon- and interferon-stimulated genes but is not a primary transcriptional activator of either.

R Pine; T Decker; Daniel S. Kessler; David E. Levy; James E. Darnell

Interferon-stimulated gene factor 2 (ISGF2) was purified from HeLa cells treated with alpha interferon. The factor, a single polypeptide of 56 kilodaltons (kDa), bound both to the central 9 base pairs of the 15-base-pair interferon-stimulated response element (ISRE) that is required for transcriptional activation of interferon-stimulated genes and to the PRD-I regulatory element of the beta interferon gene. ISGF2 was a phosphoprotein, and dephosphorylation in vitro reduced its DNA-binding activity. However, conditions that changed the amount of ISGF2 did not change the phosphorylated isoforms in vivo. ISGF2 in unstimulated cells existed in trace amounts and was induced by both alpha interferon and gamma interferon as well as by virus infection. Plasmid-bearing Escherichia coli clones encoding ISGF2 were selected with antibody against purified ISGF2. Sequence analysis revealed that the ISGF2 protein was the same as that encoded by the cDNA clone IRF-1, which has been claimed to activate transcription of interferon genes. We show that transcription of the ISGF2 gene was induced by alpha interferon, gamma interferon, and double-stranded RNA. However, ISGF2 was neither necessary nor sufficient for induced transcription of the beta interferon gene, while the factor NF kappa B was clearly involved.


The EMBO Journal | 1990

Synergistic interaction between interferon-alpha and interferon-gamma through induced synthesis of one subunit of the transcription factor ISGF3.

David E. Levy; Daniel J. Lew; T Decker; Daniel S. Kessler; James E. Darnell

Interferon‐alpha (IFN alpha) and interferon‐gamma (IFN gamma) each induce in susceptible target cells a state of resistance to viral replication and reduced cellular proliferation, presumably through different mechanisms: these two polypeptides are unrelated by primary sequence and act through distinct cell‐surface receptors to induce expression of largely non‐overlapping sets of genes. However, acting in concert, they can produce synergistic interactions leading to mutual reinforcement of the physiological response. In HeLa cells, this synergistic response was initiated by cooperative induction of IFN alpha stimulated genes (ISGs). These normally quiescent genes were rapidly induced to high rates of transcription following exposure of cells to IFN alpha. Although they were only negligibly responsive to IFN gamma, combined treatment of cells with IFN gamma followed by IFN alpha resulted in an approximately 10‐fold increase in ISG transcription. ISG transcription is dependent upon ISGF3, a positive transcription factor specific for a cis‐acting regulatory element in ISG promoters. IFN gamma treatment induced increased synthesis of latent ISGF3, which was subsequently activated in response to IFN alpha to form approximately 10‐fold higher levels than detected in cells treated with IFN alpha alone. ISGF3 is composed of two distinct polypeptide components, synthesis of one of which was induced by IFN gamma, increasing its cellular abundance from limiting concentrations to a level which allowed formation of at least 10 times as much active ISGF3. Cell lines vary in their constitutive levels of the inducible component of ISGF3 and in the ability of IFNs to increase its synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


Developmental Dynamics | 2009

Chromatin immunoprecipitation in early Xenopus laevis embryos

Shelby A. Blythe; Christine D. Reid; Daniel S. Kessler; Peter S. Klein

Chromatin immunoprecipitation (ChIP) is a powerful method for analyzing the interaction of regulatory proteins with genomic loci, but has been difficult to apply to studies on early embryos due to the limiting amount of genomic material in these samples. Here, we present a comprehensive technique for performing ChIP on blastula and gastrula stage Xenopus embryos. We also describe methods for optimizing crosslinking and chromatin shearing, verifying antibody specificity, maximizing PCR sensitivity, and quantifying PCR results, allowing for the use of as few as 50 early blastula stage embryos (approximately 5×104 cells) per experimental condition. Finally, we demonstrate the predicted binding of endogenous β‐catenin to the nodal‐related 6 promoter, binding of tagged Fast‐1/FoxH1 to the goosecoid promoter, and binding of tagged Tcf3 to the siamois and nodal‐related 6 promoters as examples of the potential application of ChIP to embryological investigations. Developmental Dynamics 238:1422–1432, 2009.


The EMBO Journal | 1988

Cells resistant to interferon are defective in activation of a promoter-binding factor

Daniel S. Kessler; R Pine; Lawrence M. Pfeffer; David E. Levy; James E. Darnell

Human cultured cell lines deficient in their ability to respond to type I interferon (IFN) fail to interrupt cellular proliferation or to induce an antiviral state following exposure to IFN alpha. Comparison of non‐responsive Daudi and HeLa cell lines with IFN‐responsive partner cell lines and examination of non‐responsive Raji cells showed that the defective cell lines expressed type I IFN receptors of typical number and affinity and bound IFN equivalently compared to the normal cells. However, transcriptional induction of interferon‐stimulated genes (ISGs) was greatly reduced and delayed in these cell lines, leading to reduced accumulation of ISG mRNA. Furthermore, the rapid activation of IFN‐stimulated promoter binding factors whose appearance correlates with ISG transcriptional induction, did not occur in non‐responsive cells. Thus, the primary defect of these cells leading to an impaired physiological response to IFN appears to be an inability to activate promoter‐binding factors necessary to trigger ISG transcription, an obligate early step in antiviral and antiproliferative physiology.


Journal of Biological Chemistry | 2007

FoxD3 and Grg4 Physically Interact to Repress Transcription and Induce Mesoderm in Xenopus

Sergey Yaklichkin; Aaron B. Steiner; Qun Lu; Daniel S. Kessler

FoxD3 is a forkhead-related transcriptional regulator that is essential for multiple developmental processes in the vertebrate embryo, including neural crest development and maintenance of mammalian stem cell lineages. Recent results demonstrate a requirement for FoxD3 in Xenopus mesodermal development. In the gastrula, FoxD3 functions as a transcriptional repressor in the Spemann organizer to maintain the expression of Nodal-related members of the transforming growth factor-β superfamily that induce dorsal mesoderm formation. Here we report that the function of FoxD3 in mesoderm induction is dependent on the recruitment of transcriptional corepressors of the TLE/Groucho family. Structure-function analyses indicate that the transcriptional repression and mesoderm induction activities of FoxD3 are dependent on a C-terminal domain, as well as specific DNA-binding activity conferred by the forkhead domain. The C-terminal domain contains a heptapeptide similar to the eh1/GEH Groucho interaction motif. Deletion and point mutagenesis demonstrated that the FoxD3 eh1/GEH motif is required for both repression of transcription and induction of mesoderm, as well as the direct physical interaction of FoxD3 and Grg4 (Groucho-related gene-4). Consistent with a functional interaction of FoxD3 and Grg4, the transcriptional repression activity of FoxD3 is enhanced by Grg4, and reduced by Grg5, a dominant inhibitory Groucho protein. The results indicate that FoxD3 recruitment of Groucho corepressors is essential for the transcriptional repression of target genes and induction of mesoderm in Xenopus.


Development | 2005

Zebrafish Lmx1b.1 and Lmx1b.2 are Required for Maintenance of the Isthmic Organizer

F. Patrick O'Hara; Ernestine Beck; Lauren K. Barr; Lily L. Wong; Daniel S. Kessler; Robert D. Riddle

The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.


Development | 2006

FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development.

Aaron B. Steiner; Mark J. Engleka; Qun Lu; Eileen Piwarzyk; Sergey Yaklichkin; Julie L. Lefebvre; James W. Walters; Liliam Pineda-Salgado; Patricia A. Labosky; Daniel S. Kessler

Induction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and differentiation of axial tissues. Engrailed-FoxD3, but not VP16-FoxD3, was identical to native FoxD3 in mesoderm-inducing activity, indicating that FoxD3 functions as a transcriptional repressor to induce mesoderm. Antagonism of FoxD3 with VP16-FoxD3 or morpholino-knockdown of FoxD3 protein resulted in a complete block to axis formation, a loss of mesodermal gene expression, and an absence of axial mesoderm, indicating that transcriptional repression by FoxD3 is required for mesodermal development. FoxD3 induced mesoderm in a non-cell-autonomous manner, indicating a role for secreted inducing factors in the response to FoxD3. Consistent with this mechanism, FoxD3 was necessary and sufficient for the expression of multiple Nodal-related genes, and inhibitors of Nodal signaling blocked mesoderm induction by FoxD3. Therefore, FoxD3 is required for Nodal expression in the Spemann organizer and this function is essential for dorsal mesoderm formation.


BMC Genomics | 2007

Prevalence of the EH1 Groucho interaction motif in the metazoan Fox family of transcriptional regulators

Sergey Yaklichkin; Alexander Vekker; Steven Stayrook; Mitchell Lewis; Daniel S. Kessler

BackgroundThe Fox gene family comprises a large and functionally diverse group of forkhead-related transcriptional regulators, many of which are essential for metazoan embryogenesis and physiology. Defining conserved functional domains that mediate the transcriptional activity of Fox proteins will contribute to a comprehensive understanding of the biological function of Fox family genes.ResultsSystematic analysis of 458 protein sequences of the metazoan Fox family was performed to identify the presence of the engrailed homology-1 motif (eh1), a motif known to mediate physical interaction with transcriptional corepressors of the TLE/Groucho family. Greater than 50% of Fox proteins contain sequences with high similarity to the eh1 motif, including ten of the nineteen Fox subclasses (A, B, C, D, E, G, H, I, L, and Q) and Fox proteins of early divergent species such as marine sponge. The eh1 motif is not detected in Fox proteins of the F, J, K, M, N, O, P, R and S subclasses, or in yeast Fox proteins. The eh1-like motifs are positioned C-terminal to the winged helix DNA-binding domain in all subclasses except for FoxG proteins, which have an N-terminal motif. Two similar eh1-like motifs are found in the zebrafish FoxQ1 and in FoxG proteins of sea urchin and amphioxus. The identification of eh1-like motifs by manual sequence alignment was validated by statistical analyses of the Swiss protein database, confirming a high frequency of occurrence of eh1-like sequences in Fox family proteins. Structural predictions suggest that the majority of identified eh1-like motifs are short α-helices, and wheel modeling revealed an amphipathicity that supports this secondary structure prediction.ConclusionA search for eh1 Groucho interaction motifs in the Fox gene family has identified eh1-like sequences in greater than 50% of Fox proteins. The results predict a physical and functional interaction of TLE/Groucho corepressors with many members of the Fox family of transcriptional regulators. Given the functional importance of the eh1 motif in transcriptional regulation, our annotation of this motif in the Fox gene family will facilitate further study of the diverse transcriptional and regulatory roles of Fox family proteins.


Developmental Biology | 2011

Siamois and Twin are redundant and essential in formation of the Spemann organizer

Sangwoo Bae; Christine D. Reid; Daniel S. Kessler

The Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family. Sia and Twn induce organizer formation and expression of organizer-specific genes, including Goosecoid (Gsc). In spite of the similarity of Sia and Twn sequence and expression pattern, it is unclear whether these factors function equivalently in promoter binding and subsequent transcriptional activation, or if Sia and Twn are required for all aspects of organizer function. Here we report that Sia and Twn activate Gsc transcription by directly binding to a conserved P3 site within the Wnt-responsive proximal element of the Gsc promoter. Sia and Twn form homodimers and heterodimers by direct homeodomain interaction and dimer forms are indistinguishable in both DNA-binding and activation functions. Sequential chromatin immunoprecipitation reveals that the endogenous Gsc promoter can be occupied by either Sia or Twn homodimers or Sia-Twn heterodimers. Knockdown of Sia and Twn together, but not individually, results in a failure of organizer gene expression and a disruption of axis formation, consistent with a redundant role for Sia and Twn in organizer formation. Furthermore, simultaneous knockdown of Sia and Twn blocks axis induction in response to ectopic Wnt signaling, demonstrating an essential role for Sia and Twn in mediating the transcriptional response to the maternal Wnt pathway. The results demonstrate the functional redundancy of Sia and Twn and their essential role in direct transcriptional responses necessary for Spemann organizer formation.


Developmental Biology | 2012

Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer.

Christine D. Reid; Yan Zhang; Michael D. Sheets; Daniel S. Kessler

Signaling inputs from multiple pathways are essential for the establishment of distinct cell and tissue types in the embryo. Therefore, multiple signals must be integrated to activate gene expression and confer cell fate, but little is known about how this occurs at the level of target gene promoters. During early embryogenesis, Wnt and Nodal signals are required for formation of the Spemann organizer, which is essential for germ layer patterning and axis formation. Signaling by both Wnt and Nodal pathways is required for the expression of multiple organizer genes, suggesting that integration of these signals is required for organizer formation. Here, we demonstrate transcriptional cooperation between the Wnt and Nodal pathways in the activation of the organizer genes Goosecoid (Gsc), Cerberus (Cer), and Chordin (Chd). Combined Wnt and Nodal signaling synergistically activates transcription of these organizer genes. Effectors of both pathways occupy the Gsc, Cer and Chd promoters and effector occupancy is enhanced with active Wnt and Nodal signaling. This suggests that, at organizer gene promoters, a stable transcriptional complex containing effectors of both pathways forms in response to combined Wnt and Nodal signaling. Consistent with this idea, the histone acetyltransferase p300 is recruited to organizer promoters in a Wnt and Nodal effector-dependent manner. Taken together, these results offer a mechanism for spatial and temporal restriction of organizer gene transcription by the integration of two major signaling pathways, thus establishing the Spemann organizer domain.

Collaboration


Dive into the Daniel S. Kessler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine D. Reid

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Yaklichkin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Aaron B. Steiner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Qun Lu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R Pine

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Eileen J. Craig

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shouwen Wang

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge