Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Segal is active.

Publication


Featured researches published by Daniel Segal.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Commensal bacteria play a role in mating preference of Drosophila melanogaster

Gil Sharon; Daniel Segal; John Ringo; Abraham Hefetz; Ilana Zilber-Rosenberg; Eugene Rosenberg

Development of mating preference is considered to be an early event in speciation. In this study, mating preference was achieved by dividing a population of Drosophila melanogaster and rearing one part on a molasses medium and the other on a starch medium. When the isolated populations were mixed, “molasses flies” preferred to mate with other molasses flies and “starch flies” preferred to mate with other starch flies. The mating preference appeared after only one generation and was maintained for at least 37 generations. Antibiotic treatment abolished mating preference, suggesting that the fly microbiota was responsible for the phenomenon. This was confirmed by infection experiments with microbiota obtained from the fly media (before antibiotic treatment) as well as with a mixed culture of Lactobacillus species and a pure culture of Lactobacillus plantarum isolated from starch flies. Analytical data suggest that symbiotic bacteria can influence mating preference by changing the levels of cuticular hydrocarbon sex pheromones. The results are discussed within the framework of the hologenome theory of evolution.


BMC Bioinformatics | 2006

QPath: a method for querying pathways in a protein-protein interaction network

Tomer Shlomi; Daniel Segal; Eytan Ruppin; Roded Sharan

BackgroundSequence comparison is one of the most prominent tools in biological research, and is instrumental in studying gene function and evolution. The rapid development of high-throughput technologies for measuring protein interactions calls for extending this fundamental operation to the level of pathways in protein networks.ResultsWe present a comprehensive framework for protein network searches using pathway queries. Given a linear query pathway and a network of interest, our algorithm, QPath, efficiently searches the network for homologous pathways, allowing both insertions and deletions of proteins in the identified pathways. Matched pathways are automatically scored according to their variation from the query pathway in terms of the protein insertions and deletions they employ, the sequence similarity of their constituent proteins to the query proteins, and the reliability of their constituent interactions. We applied QPath to systematically infer protein pathways in fly using an extensive collection of 271 putative pathways from yeast. QPath identified 69 conserved pathways whose members were both functionally enriched and coherently expressed. The resulting pathways tended to preserve the function of the original query pathways, allowing us to derive a first annotated map of conserved protein pathways in fly.ConclusionPathway homology searches using QPath provide a powerful approach for identifying biologically significant pathways and inferring their function. The growing amounts of protein interactions in public databases underscore the importance of our network querying framework for mining protein network data.


EMBO Reports | 2001

JAB1/CSN5 and the COP9 signalosome: A complex situation

Daniel A. Chamovitz; Daniel Segal

The Jun activating binding protein (JAB1) specifically stabilizes complexes of c‐Jun or JunD with AP‐1 sites, increasing the specificity of target gene activation by AP‐1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).


Current Biology | 1999

The COP9 signalosome is essential for development of Drosophila melanogaster.

Shiri Freilich; Efrat Oron; Ya’ara Kapp; Yael Nevo-Caspi; Sara Orgad; Daniel Segal; Daniel A. Chamovitz

The COP9 signalosome (originally described as the COP9 complex) is an essential multi-subunit repressor of light-regulated development in plants [1] [2]. It has also been identified in mammals, though its role remains obscure [3] [4] [5]. This complex is similar to the regulatory lid of the proteasome and eIF3 [5] [9] [10] [11] [12] and several of its subunits are known to be involved in kinase signaling pathways [4] [6] [7] [8]. No proteins homologous to COP9 signalosome components were identified in the Saccharomyces cerevisiae genome, suggesting that the COP9 signalosome is specific for multi-cellular differentiation [13]. In order to reveal the developmental function of the COP9 signalosome in animals, we have isolated Drosophila melanogaster genes encoding eight subunits of the COP9 signalosome, and have shown by co-immunoprecipitation and gel-filtration analysis that these proteins are components of the Drosophila COP9 signalosome. Yeast two-hybrid assays indicated that several of these proteins interact, some through the PCI domain. Disruption of one of the subunits by either a P-element insertion or deletion of the gene caused lethality at the late larval or pupal stages. This lethality is probably a result of numerous pleiotropic effects. Our results indicate that the COP9 signalosome is conserved in invertebrates and that it has an essential role in animal development.


Molecular and Cellular Endocrinology | 1991

Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila

Michal Altaratz; Shalom W. Applebaum; David S. Richard; Lawrence I. Gilbert; Daniel Segal

Juvenile hormone (JH) is a major regulator of insect development and reproduction and its titer is determined largely by central nervous system regulation of JH synthesis by the corpora allata. To establish the basis for a molecular genetic dissection of the neuroendocrine system responsible for modulating JH titer, a radiochemical assay was utilized to examine JH synthesis in vitro by the isolated corpus allatum as well as the regulation of this synthesis by brain extracts of wild-type and apterous mutant Drosophila melanogaster females during reproductive maturation. JH production by glands of wild-type females increases in parallel with the progress of ovarian maturation, the major product of the adult corpus allatum being juvenile hormone 3 bis-epoxide (JHB3). Gland activity appears to be regulated by both the availability of JH precursors and the level of terminal oxidase(s) in the JH biosynthetic pathway. The brain contains an allatostatic factor, that is transmitted to the glands via nervous connections. Allatostatin production in the brain appears to be positively regulated by JHB3. Adult corpora allata from the mutants ap4 and ap56f synthesize very low levels of JH; additionally, brains of ap56f homozygotes lack allatostatic activity.


Neuron | 2002

Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Glial Cells

Greg S. B. Suh; Burkhard Poeck; Tanguy Chouard; Efrat Oron; Daniel Segal; Daniel A. Chamovitz; S. Lawrence Zipursky

Different classes of photoreceptor neurons (R cells) in the Drosophila compound eye form connections in different optic ganglia. The R1-R6 subclass connects to the first optic ganglion, the lamina, and relies upon glial cells as intermediate targets. Conversely, R cells promote glial cell development including migration of glial cells into the target region. Here, we show that the JAB1/CSN5 subunit of the COP9 signalosome complex is expressed in R cells, accumulates in the developing optic lobe neuropil, and through the analysis of a unique set of missense mutations, is required in R cells to induce lamina glial cell migration. In these CSN5 alleles, R1-R6 targeting is disrupted. Genetic analysis of protein null alleles further revealed that the COP9 signalosome is required at an earlier stage of development for R cell differentiation.


PLOS ONE | 2011

Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models.

Anat Frydman-Marom; Aviad Levin; Dorit Farfara; Tali Benromano; Roni Scherzer-Attali; Sivan Peled; Robert Vassar; Daniel Segal; Ehud Gazit; Dan Frenkel; Michael Ovadia

An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ) play a key role in Alzheimers disease (AD) pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt), which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet.


PLOS ONE | 2010

Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor.

Roni Scherzer-Attali; Riccardo Pellarin; Marino Convertino; Anat Frydman-Marom; Nirit Egoz-Matia; Sivan Peled; Michal Levy-Sakin; Deborah E. Shalev; Amedeo Caflisch; Ehud Gazit; Daniel Segal

The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimers disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimers disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimers disease.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Ssdp proteins interact with the LIM-domain-binding protein Ldb1 to regulate development

Lan Chen; Daniel Segal; Neil A. Hukriede; Alexandre V. Podtelejnikov; Dashzeveg Bayarsaihan; James A. Kennison; Vasily Ogryzko; Igor B. Dawid; Heiner Westphal

The LIM-domain-binding protein Ldb1 is a key factor in the assembly of transcriptional complexes involving LIM-homeodomain proteins and other transcription factors that regulate animal development. We identified Ssdp proteins (previously described as sequence-specific, single-stranded-DNA-binding proteins) as components of Ldb1-associated nuclear complexes in HeLa cells. Ssdp proteins are associated with Ldb1 in a variety of additional mammalian cell types. This association is specific, does not depend on the presence of nucleic acids, and is functionally significant. Genes encoding Ssdp proteins are well conserved in evolution from Drosophila to humans. Whereas the vertebrate Ssdp gene family has several closely related members, the Drosophila Ssdp gene is unique. In Xenopus, Ssdp encoded by Drosophila Ssdp or mouse Ssdp1 mRNA enhances axis induction by Ldb1 in conjunction with the LIM-homeobox gene Xlim1. Furthermore, we were able to demonstrate an interaction between Ssdp and Chip (the fly homolog of Ldb1) in Drosophila wing development. These findings indicate functional conservation of Ssdp as a cofactor of Ldb1 during invertebrate and vertebrate development.


PLOS ONE | 2010

Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies

Ronit Shaltiel-Karyo; Moran Frenkel-Pinter; Nirit Egoz-Matia; Anat Frydman-Marom; Deborah E. Shalev; Daniel Segal; Ehud Gazit

The intracellular oligomerization of α-synuclein is associated with Parkinsons disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we indentified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinsons disease.

Collaboration


Dive into the Daniel Segal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge