Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Sigg is active.

Publication


Featured researches published by Daniel Sigg.


Neuron | 1996

Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.

Sang-Ah Seoh; Daniel Sigg; Diane M. Papazian; Francisco Bezanilla

The activation of Shaker K+ channels is steeply voltage dependent. To determine whether conserved charged amino acids in putative transmembrane segments S2, S3, and S4 contribute to the gating charge of the channel, the total gating charge movement per channel was measured in channels containing neutralization mutations. Of eight residues tested, four contributed significantly to the gating charge: E293, an acidic residue in S2, and R365, R368, and R371, three basic residues in the S4 segment. The results indicate that these residues are a major component of the voltage sensor. Furthermore, the S4 segment is not solely responsible for gating charge movement in Shaker K+ channels.


Biophysical Journal | 2001

Bilayer Reconstitution of Voltage-Dependent Ion Channels using a Microfabricated Silicon Chip

Rigo Pantoja; Daniel Sigg; Rikard Blunck; Francisco Bezanilla; James R. Heath

Painted bilayers containing reconstituted ion channels serve as a well defined model system for electrophysiological investigations of channel structure and function. Horizontally oriented bilayers with easy solution access to both sides were obtained by painting a phospholipid:decane mixture across a cylindrical pore etched into a 200-microm thick silicon wafer. Silanization of the SiO(2) layer produced a hydrophobic surface that promoted the adhesion of the lipid mixture. Standard lithographic techniques and anisotropic deep-reactive ion etching were used to create pores with diameters from 50 to 200 microm. The cylindrical structure of the pore in the partition and the surface treatment resulted in stable bilayers. These were used to reconstitute Maxi K channels in the 100- and 200-microm diameter pores. The electrophysiological characteristics of bilayers suspended in microchips were comparable with that of other bilayer preparations. The horizontal orientation and good voltage clamping properties make the microchip bilayer method an excellent system to study the electrical properties of reconstituted membrane proteins simultaneously with optical probes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Fast gating in the Shaker K+ channel and the energy landscape of activation

Daniel Sigg; Francisco Bezanilla; Enrico Stefani

An early component of the gating current in Shaker K+ channels with a time constant of ≈12 μsec has been recorded with a high-speed patch–clamp setup. This fast component was found to be part of the gating current associated with the opening and closing of the channel. With regard to an energy-landscape interpretation of protein kinetics, the voltage and temperature dependence of the fast component may be explained by a combination of drift diffusion and barrier jumping in the initial stages of channel activation. The data were modeled by a gating particle undergoing Brownian motion in a one-dimensional diffusion landscape that featured diminishing electrical resistance and entropy in the direction of channel activation. The final open state of the channel was reasoned to be narrow and deep to account for successful subtraction of linear-charge displacements at positive potentials. The overall picture of gating that emerges from these studies is that the channel experiences incremental organization from a relaxed state in the early steps of activation to a rigidly structured open state.


The Journal of General Physiology | 2004

Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect.

Trude Haug; Daniel Sigg; Sergio Ciani; Ligia Toro; Enrico Stefani; Riccardo Olcese

The pore region of the majority of K+ channels contains the highly conserved GYGD sequence, known as the K+ channel signature sequence, where the GYG is critical for K+ selectivity (Heginbotham, L., T. Abramson, and R. MacKinnon. 1992. Science. 258:1152–1155). Exchanging the aspartate residue with asparagine in this sequence abolishes ionic conductance of the Shaker K+ channel (D447N) (Hurst, R.S., L. Toro, and E. Stefani. 1996. FEBS Lett. 388:59–65). In contrast, we found that the corresponding mutation (D292N) in the pore forming α subunit (hSlo) of the voltage- and Ca2+-activated K+ channel (BKCa, MaxiK) did not prevent conduction but reduced single channel conductance. We have investigated the role of outer pore negative charges in ion conduction (this paper) and channel gating (Haug, T., R. Olcese, T. Ligia, and E. Stefani. 2004. J. Gen Physiol. 124:185–197). In symmetrical 120 mM [K+], the D292N mutation reduced the outward single channel conductance by ∼40% and nearly abolished inward K+ flow (outward rectification). This rectification was partially relieved by increasing the external K+ concentration to 700 mM. Small inward currents were resolved by introducing an additional mutation (R207Q) that greatly increases the open probability of the channel. A four-state multi-ion pore model that incorporates the effects of surface charge was used to simulate the essential properties of channel conduction. The conduction properties of the mutant channel (D292N) could be predicted by a simple ∼8.5-fold reduction of the surface charge density without altering any other parameter. These results indicate that the aspartate residue in the BKCa pore plays a key role in conduction and suggest that the pore structure is not affected by the mutation. We speculate that the negative charge strongly accumulates K+ in the outer vestibule close to the selectivity filter, thus increasing the rate of ion entry into the pore.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel

Antonios Pantazis; Vadym Gudzenko; Nicoletta Savalli; Daniel Sigg; Riccardo Olcese

Voltage sensor domains (VSDs) are structurally and functionally conserved protein modules that consist of four transmembrane segments (S1–S4) and confer voltage sensitivity to many ion channels. Depolarization is sensed by VSD-charged residues residing in the membrane field, inducing VSD activation that facilitates channel gating. S4 is typically thought to be the principal functional component of the VSD because it carries, in most channels, a large portion of the VSD gating charge. The VSDs of large-conductance, voltage- and Ca2+-activated K+ channels are peculiar in that more gating charge is carried by transmembrane segments other than S4. Considering its “decentralized” distribution of voltage-sensing residues, we probed the BKCa VSD for evidence of cooperativity between charge-carrying segments S2 and S4. We achieved this by optically tracking their activation by using voltage clamp fluorometry, in channels with intact voltage sensors and charge-neutralized mutants. The results from these experiments indicate that S2 and S4 possess distinct voltage dependence, but functionally interact, such that the effective valence of one segment is affected by charge neutralization in the other. Statistical-mechanical modeling of the experimental findings using allosteric interactions demonstrates two mechanisms (mechanical coupling and dynamic focusing of the membrane electric field) that are compatible with the observed cross-segment effects of charge neutralization.


Biophysical Journal | 2003

A Physical Model of Potassium Channel Activation: From Energy Landscape to Gating Kinetics

Daniel Sigg; Francisco Bezanilla

We have developed a method for rapidly computing gating currents from a multiparticle ion channel model. Our approach is appropriate for energy landscapes that can be characterized by a network of well-defined activation pathways with barriers. To illustrate, we represented the gating apparatus of a channel subunit by an interacting pair of charged gating particles. Each particle underwent spatial diffusion along a bistable potential of mean force, with electrostatic forces coupling the two trajectories. After a step in membrane potential, relaxation of the smaller barrier charge led to a time-dependent reduction in the activation barrier of the principal gate charge. The resulting gating current exhibited a rising phase similar to that measured in voltage-dependent ion channels. Reduction of the two-dimensional diffusion landscape to a circular Markov model with four states accurately preserved the time course of gating currents on the slow timescale. A composite system containing four subunits leading to a concerted opening transition was used to fit a series of gating currents from the Shaker potassium channel. We end with a critique of the model with regard to current views on potassium channel structure.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional heterogeneity of the four voltage sensors of a human L-type calcium channel

Antonios Pantazis; Nicoletta Savalli; Daniel Sigg; Alan Neely; Riccardo Olcese

Significance Intracellular Ca2+ concentration is a chemical message upstream of critical physiological processes: synaptic and endocrine signaling, muscle contraction, etc. In excitable cells, calcium influx is controlled by voltage-gated calcium (CaV) channels. The CaV protein possesses four homologous but nonidentical voltage-sensing domains (VSDs), each potentially acting as a gatekeeper for the calcium signal. However, the contribution of each VSD to calcium entry is unclear. By optically tracking the voltage-dependent movements of each human CaV1.2 VSD, we revealed the conformational rearrangements that precede and govern excitation-evoked calcium signaling: VSDs II and III primarily control CaV1.2 conduction. Global structure-based kinetic modeling also revealed the participation of VSD I, implicating principles of protein allostery in the CaV VSD–pore coupling mechanism. Excitation-evoked Ca2+ influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca2+ entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I–IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening.


Journal of Biological Chemistry | 2012

The Contribution of RCK Domains to Human BK Channel Allosteric Activation

Nicoletta Savalli; Antonios Pantazis; Taleh N. Yusifov; Daniel Sigg; Riccardo Olcese

Background: In BK channels, Ca2+ and voltage sensors are allosterically connected to the pore. Results: We optically resolved voltage sensor rearrangements, initiated by Ca2+ binding to the intracellular domains RCK1 and RCK2. Impairing the RCK2 abolished this allosteric effect. Conclusion: The RCK2 Ca2+ sensor is required for the allosteric facilitation of voltage sensor activation. Significance: RCK1 and RCK2 Ca2+ sensors are not functionally homologous. Large conductance voltage- and Ca2+-activated K+ (BK) channels are potent regulators of cellular processes including neuronal firing, synaptic transmission, cochlear hair cell tuning, insulin release, and smooth muscle tone. Their unique activation pathway relies on structurally distinct regulatory domains including one transmembrane voltage-sensing domain (VSD) and two intracellular high affinity Ca2+-sensing sites per subunit (located in the RCK1 and RCK2 domains). Four pairs of RCK1 and RCK2 domains form a Ca2+-sensing apparatus known as the “gating ring.” The allosteric interplay between voltage- and Ca2+-sensing apparati is a fundamental mechanism of BK channel function. Using voltage-clamp fluorometry and UV photolysis of intracellular caged Ca2+, we optically resolved VSD activation prompted by Ca2+ binding to the gating ring. The sudden increase of intracellular Ca2+ concentration ([Ca2+]i) induced a hyperpolarizing shift in the voltage dependence of both channel opening and VSD activation, reported by a fluorophore labeling position 202, located in the upper side of the S4 transmembrane segment. The neutralization of the Ca2+ sensor located in the RCK2 domain abolished the effect of [Ca2+]i increase on the VSD rearrangements. On the other hand, the mutation of RCK1 residues involved in Ca2+ sensing did not prevent the effect of Ca2+ release on the VSD, revealing a functionally distinct interaction between RCK1 and RCK2 and the VSD. A statistical-mechanical model quantifies the complex thermodynamics interplay between Ca2+ association in two distinct sites, voltage sensor activation, and BK channel opening.


The Journal of General Physiology | 2014

Modeling ion channels: Past, present, and future

Daniel Sigg

Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule.


The Journal of General Physiology | 2013

A linkage analysis toolkit for studying allosteric networks in ion channels

Daniel Sigg

A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca2+-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the “work function,” or the free energy required to activate the principal component. The second are “lever operations” activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy WH[g], which is a “local” work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy WC[q], representing “global” gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (VM) of normalized capacitance (slope of Q-V curve). Plots of WH[g] and WC[q] versus voltage and Ca2+ potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca2+-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%.

Collaboration


Dive into the Daniel Sigg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Stefani

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Heath

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rigo Pantoja

University of California

View shared research outputs
Top Co-Authors

Avatar

Sang-Ah Seoh

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge