Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Simão is active.

Publication


Featured researches published by Daniel Simão.


Tissue Engineering Part A | 2015

Modeling human neural functionality in vitro: three-dimensional culture for dopaminergic differentiation.

Daniel Simão; Catarina Pinto; Stefania Piersanti; Anne Weston; Peddie Cj; Bastos Ae; Licursi; Sigrid C. Schwarz; Lucy M. Collinson; Sara Salinas; Margarida Serra; Ana P. Teixeira; Isabella Saggio; Pedro A. Lima; Eric J. Kremer; Giampietro Schiavo; Catarina Brito; Paula M. Alves

Advances in mechanistic knowledge of human neurological disorders have been hindered by the lack of adequate human in vitro models. Three-dimensional (3D) cellular models displaying higher biological relevance are gaining momentum; however, their lack of robustness and scarcity of analytical tools adapted to three dimensions hampers their widespread implementation. Herein we show that human midbrain-derived neural progenitor cells, cultured as 3D neurospheres in stirred culture systems, reproducibly differentiate into complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Moreover, an extensive toolbox of analytical methodologies has been adapted to 3D neural cell models, allowing molecular and phenotypic profiling and interrogation. The generated neurons underwent synaptogenesis and elicit spontaneous Ca(2+) transients. Synaptic vesicle trafficking and release of dopamine in response to depolarizing stimuli was also observed. Under whole-cell current-and-voltage clamp, recordings showed polarized neurons (Vm=-70 mV) and voltage-dependent potassium currents, which included A-type-like currents. Glutamate-induced currents sensitive to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate antagonists revealed the existence of functional glutamate receptors. Molecular and phenotypic profiling showed recapitulation of midbrain patterning events, and remodeling toward increased similarity to human brain features, such as extracellular matrix composition and metabolic signature. We have developed a robust and reproducible human 3D neural cell model, which may be extended to patient-derived induced pluripotent stem cells, broadening the applicability of this model.


Frontiers in Cellular Neuroscience | 2014

Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

Emilio J. Gualda; Daniel Simão; Catarina Pinto; Paula M. Alves; Catarina Brito

The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.


PLOS ONE | 2015

Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

Stefania Piersanti; Romina Burla; Valerio Licursi; Catarina Brito; Mattia La Torre; Paula M. Alves; Daniel Simão; Carla Mottini; Sara Salinas; Rodolfo Negri; Enrico Tagliafico; Eric J. Kremer; Isabella Saggio

Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD) canine adenovirus type 2 vectors (CAV-2) are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.


Gene Therapy | 2016

Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.

Daniel Simão; Catarina Pinto; Paulo Fernandes; Peddie Cj; Stefania Piersanti; Lucy M. Collinson; Sara Salinas; Isabella Saggio; Giampietro Schiavo; Eric J. Kremer; Catarina Brito; Paula M. Alves

Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.


Scientific Reports | 2016

Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks

Daniel Simão; Ana P. Terrasso; Ana P. Teixeira; Catarina Brito; Ursula Sonnewald; Paula M. Alves

The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-13C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells.


Biotechnology Journal | 2015

Human amniocyte‐derived cells are a promising cell host for adenoviral vector production under serum‐free conditions

Ana Carina Silva; Daniel Simão; Claudia Küppers; Tanja Lucas; Marcos F.Q. Sousa; Pedro Cruz; Manuel J.T. Carrondo; Stefan Kochanek; Paula M. Alves

Recombinant adenovirus vectors (AdVs) have been used for the development of vaccines, as gene therapy vectors and for protein production. Currently, the production of clinical grade batches of recombinant E1-deleted adenovirus type 5 vectors is performed using human-derived HEK293 or PER.C6(®) cell lines. In this work we describe the generation of a new human amniocyte-derived cell line named 1G3 and show that it can be used as a very promising cell host for AdV production in serum-free conditions, allowing for production in high cell density cultures and avoiding the typical cell density effect observed for HEK293. By design, this cell line makes the generation of replication-competent adenovirus during production of E1-deleted AdVs very unlikely. The impact of the culture system (static versus agitated) and AdV infection parameters such as multiplicity of infection, time of harvesting and cell concentration at infection were evaluated and compared with HEK293. Using stirred tanks bioreactors, it was possible to grow 1G3 cells to cell densities of up to 9 × 10(6) cells/mL using serum-free media. Moreover, without a medium exchange step at infection, a three-fold increase in AdV volumetric titers was obtained, as no cell density effect was observed at CCI 3. Overall, our results clearly demonstrate the potential of the human amniocyte-derived newly established cell line 1G3 for AdV production in a serum-free scalable process, paving the way for further process improvements based on fed-batch or perfusion strategies.


Methods of Molecular Biology | 2016

Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells

Daniel Simão; Francisca Arez; Ana P. Terasso; Catarina Pinto; Marcos F. Q. Sousa; Catarina Brito; Paula M. Alves

Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable for the generation of human 3D neural in vitro models, which can be used to feed high-throughput screening platforms, contributing to expand the available in vitro tools for drug screening and toxicological studies.


BMC Proceedings | 2011

Towards human central nervous system in vitro models for preclinical research: strategies for 3D neural cell culture

Daniel Simão; Inês Costa; Margarida Serra; Johannes Schwarz; Catarina Brito; Paula M. Alves

Background The development of new drugs for human Central Nervous System (CNS) diseases has traditionally relied on 2D in vitro cell models and genetically engineered animal models. However, those models often diverge considerably from that of human phenotype (anatomical, developmental and biochemical differences) [1] contributing to a high attrition rate only 8% of CNS drugs entering clinical trials end up being approved [2]. Human 3D in vitro models are useful complementary tools towards more accurate evaluation of drug candidates in pre-clinical stages, as they present an intermediate degree of complexity in terms of cell-cell and cellmatrix interactions, between the traditional 2D monolayer culture conditions and the complex brain and can be a better starting point for the analysis of the in vivo context. Aiming at developing novel 3D in vitro models of the CNS, this work focus on the implementation of long-term cultures of human midbrain-derived neural stem cells (hmNSC) for the scalable supply of neuralsubtype cells, with a focus on the dopaminergic lineage, following a systematic technological approach based on stirred culture systems.


Gene Therapy | 2015

Impact of adenovirus life cycle progression on the generation of canine helper-dependent vectors

Paulo Fernandes; Daniel Simão; M R Guerreiro; Eric J. Kremer; Ana S. Coroadinha; Paula M. Alves

Helper-dependent adenovirus vectors (HDVs) are safe and efficient tools for gene transfer with high cloning capacity. However, the multiple amplification steps needed to produce HDVs hamper a robust production process and in turn the availability of high-quality vectors. To understand the factors behind the low productivity, we analyzed the progression of HDV life cycle. Canine adenovirus (Ad) type 2 vectors, holding attractive features to overcome immunogenic concerns and treat neurobiological disorders, were the focus of this work. When compared with E1-deleted (ΔE1) vectors, we found a faster helper genome replication during HDV production. This was consistent with an upregulation of the Ad polymerase and pre-terminal protein and led to higher and earlier expression of structural proteins. Although genome packaging occurred similarly to ΔE1 vectors, more immature capsids were obtained during HDV production, which led to a ~4-fold increase in physical-to-infectious particles ratio. The higher viral protein content in HDV-producing cells was also consistent with an increased activation of autophagy and cell death, in which earlier cell death compromised volumetric productivity. The increased empty capsids and earlier cell death found in HDV production may partially contribute to the lower vector infectivity. However, an HDV-specific factor responsible for a defective maturation process should be also involved to fully explain the low infectious titers. This study showed how a deregulated Ad cycle progression affected cell line homeostasis and HDV propagation, highlighting the impact of vector genome design on virus–cell interaction.


BMC Proceedings | 2013

1H-NMR spectroscopy for human 3D neural stem cell cultures metabolic profiling

Daniel Simão; Catarina Pinto; Ana P. Teixeira; Paula M. Alves; Catarina Brito

Background The current lack of predictable central nervous system (CNS) models in pharmaceutical industry early stage development strongly contributes for the high attrition rates registered for new therapeutics [1]. Thus, there is an increasing need for a paradigm shift towards more human relevant cell models, which can closely recapitulate the in vivo cell-cell interactions, presenting higher physiological relevance by bridging the gap between animal models and human clinical trials. In this context, human 3D in vitro models are promising tools with great potential for preclinical research, as they can mimic some of the main features of tissues, such as cell-cell and cell-extracellular matrix (ECM) interactions [2,3]. Moreover these complex cell models are suitable for high-throughput screening (HTS) platforms, essential in drug discovery pipelines by reducing both costs and time in clinical trials [2,4]. However, despite important advances in the last years and the increasing clinical and biological relevance, the full establishment of human 3D in vitro models in pre-clinical research requires a significant increase in the power of the available analytical methodologies towards more robust and comprehensive readouts [4]. With the emergence of systems biology field and several “-omics” technologies, such as metabolomics, it became possible to have a more mechanistic approach in the understanding of cellular programs. H-nuclear magnetic resonance (H-NMR) spectroscopy is a powerful and widely accepted high resolution methodology for a number of applications, including metabolic profiling [5]. Despite the low sensitivity when compared with mass spectrometry (MS), H-NMR profiling presents several advantages, enabling a non-invasive and non-destructive quantitative analysis requiring only minimal sample preparation [5]. In this work we present the development of a robust and optimized workflow for the exometabolome profiling of 3D in vitro cultures of human midbrain-derived neural progenitor cells (hmNPC).

Collaboration


Dive into the Daniel Simão's collaboration.

Top Co-Authors

Avatar

Paula M. Alves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Catarina Brito

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eric J. Kremer

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Catarina Pinto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Paulo Fernandes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabella Saggio

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Margarida Serra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stefania Piersanti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge