Daniel Słyś
Rzeszów University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Słyś.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2012
Daniel Słyś; Agnieszka Stec; Martina Zeleňáková
A LCC Analysis of Rainwater Management Variants The paper presents results of the Life Cycle Cost (LCC) analysis carried out for several variants of rainfall water management in a newly designed multi-family dwelling house. According to the LCC methodology, calculations were performed for the whole undertaking life cycle with both investment outlays and operation/maintenance costs taken into account. The LCC analysis was carried out, in particular, for a variant assuming that the rainwater collected from the roof will be entirely discharged to the sewage system. On the other hand, the second variant provided for replacement of traditional building roof with a green one. Facilities of that type, thanks to their retention properties, may delay runoff of rainwater and reduce the overall quantity of water discharged from roof surface and therefore can be classified as Sustainable Urban Drainage Systems. In the third case considered, rainwater is to be utilised in the building. It was assumed that precipitation water will be stored in a tank and used in the sanitary water supply system for flushing toilets, thus reducing the overall tap water purchase costs. Analiza LCC wariantów zagospodarowania wód deszczowych Przedstawiono wyniki analizy LCC dla kilku wariantów zagospodarowania wód opadowych dla projektowanego wielorodzinnego budynku mieszkalnego. Zgodnie z metodologią określania Life Cycle Cost wykonano obliczenia w pełnym cyklu istnienia przedsięwzięcia, uwzględniając zarówno nakłady inwestycyjne, jak i koszty użytkowania i konserwacji. Analiza LCC została przeprowadzona dla wariantu, w którym założono, że wody opadowe z dachu zostaną odprowadzone w całości do systemu kanalizacyjnego. Natomiast w drugim wariancie tradycyjny dach budynku został zastąpiony dachem zielonym. Tego typu obiekty dzięki swoim właściwościom retencyjnym mogą opóźniać spływ wód opadowych i redukować całkowity odpływ z powierzchni dachu, przez co zaliczane są do zrównoważonych systemów odwadniających (Sustainable Urban Drainage Systems). W trzecim przypadku zastosowano system gospodarczego wykorzystania wody deszczowej w budynku. Założono, że zmagazynowane w zbiorniku wody opadowe zostaną wykorzystane w instalacji sanitarnej do spłukiwania toalet, co pozwoli obniżyć koszty zakupu wody wodociągowej i wpłynie korzystanie na wyniki finansowe funkcjonowania obiektu mieszkalnego.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2015
Daniel Słyś; Agnieszka Stec
Abstract Climate change, improper use of water resources, surface waters pollution as well as increase of water requirements are the results of growing population of people in the world. It causes water deficiency in majority of countries in the world, including Poland. Due to the water pollution advanced technologies for its treatment are in demand, what leads to increase of water price. In this connection, there are more often taken actions to reduce water consumption by using rainwater to flush toilets, wash cars, do laundry or water green areas. This publication presents results of Life Cycle Cost analysis of two variants of water supply systems designed for multi-family residential building situated in Rzeszow. In line with LCC methodology the calculations were made throughout the whole life-cycle of the building considering initial investment outlays intended for construction of water supply system as well as operation and maintenance costs. In the first of analyzed variants it was assumed that the system would be fed by municipal water supply network. In the second variant rainwater harvesting system for domestic use was additionally applied. Rainwater stored in the tank would be used in sanitary installation to flush toilets, what leads to lowering the costs of municipal water purchase, reducing fees for rainwater discharge to sewage system and consequently is beneficial for financial standing of the examined building.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2013
Agnieszka Stec; Daniel Słyś
Abstract The paper presents the results of the analysis of the sewage system functioning in the city of Przemysl. It was assumed that, as a result of joining to the city new areas, the volume of stormwater discharged to existing combined sewer system would increase continuously. The information about the areas that are planned to be joined was drawn from current development plan of the city. On the basis of data received from the sewage system exploiter hydrodynamic model of the drainage basin of Zasanie quarter was created. The model is based on the existing sewerage network design and development plan of the city. Simulations with the use of real-life precipitation data collected by the pluviometer in Przemysl were carried out with the use of Storm Water Management Model program. Abstrakt W pracy dokonano analizy funkcjonowania systemu kanalizacyjnego miasta Przemyśla, w której założono wzrost ilości ścieków deszczowych odprowadzanych do istniejącej sieci kanalizacji ogólnospławnej, będący wynikiem przyłączenie do miasta nowych obszarów. Tereny te zostały ustalone zgodnie z obowiązującym „Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Przemyśla”. Na podstawie danych uzyskanych od eksploatatora systemu kanalizacyjnego stworzono model hydrodynamiczny zlewni dzielnicy Zasanie. Model ten został zbudowany w programie Storm Water Management Model na podstawie projektu istniejącej sieci kanalizacyjnej miasta i planów zagospodarowania przestrzennego. Do symulacji wykorzystano rzeczywiste dane opadowe, zarejestrowane na deszczomierzach w Przemyślu. Celem przeprowadzonej analizy było określenie wpływu rozwoju terenów miejskich na przepływy ścieków systemem kanalizacyjnym.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2014
Agnieszka Stec; Daniel Słyś
Abstract After presentation of the characteristics of a water reservoir in CaCO3 excavation pit, called the Turkusowe Lake, situated in the Wolin National Park on the Wolin Island, available results of the analyses referring to the quality of surface water of this water reservoir and being carried out since 1986 as well as those of own studies being carried out from 1999 to 2010 were gathered, collecting this way a research material covering the quarter-century 1986-2010. It was shown that the Turkusowe Lake is a water reservoir being resistant by nature to eutrophication (lake basin development and depth, surrounding by the heights adhering to it, and presence of CaCO3 building the lake basin), whereas an increase in the trophic level and development of eutrophication phenomena in the form of weak phytoplankton blooms being observed, particularly in 2005-2010, is connected with increased anthropogenic pressure in the form of direct discharge of municipal sewage to the lake and waste-water to the soil in the alimentation zone of underground waters feeding this lake. The extent of anthropogenic pressure was so big that it started to prevail over the natural processes limiting an increase in the trophic level in this lake.
Archive | 2015
Józef Dziopak; Daniel Słyś
Rising costs of traditional precipitation wastewater disposal are connected with increasing urbanization. This unfavorable situation enforces to apply local rainwater management wherever possible. The urgent matter is to search for alternative solutions which guarantee effective rainwater management in the area of precipitation occurrence. The sustainable development within the framework of created wastewater management systems should be realized multidirectionally when it comes to rainwater. Starting with natural methods of rainwater management through the use of existing and constructed sewage systems equipped with artificial storage reservoirs and devices for regulation of the rainwater flow capacity.
Selected Scientific Papers - Journal of Civil Engineering | 2017
Aleksandra Mazur; Daniel Słyś
Abstract Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.
International Symposium on Water in Environment | 2017
Agnieszka Stec; Daniel Słyś
Natural water resources of Poland are among the lowest in Europe. In addition, the intensive development of urbanized areas and the associated increase in water demand necessitate the need to look for alternative sources. However, limiting the amount of resources available for use does not go hand in hand with the development of ecological awareness of society, which has the greatest attention still attached to the financial criterion. Considering this, the studies have been conducted to determine the cost-effectiveness of the rainwater harvesting system (RWHS) in a single-family house located in selected Polish cities where rainfall varies in height. Financial analysis for four different variants of the water supply system in the building in question has been done using the Life Cycle Cost (LCC) Methodology. The results show that RWHS financial performance varies widely, but it has also been found that the variant in which rainwater will be used to flush toilets, wash, and water the garden is characterized by the lowest LCC costs irrespective of tank capacity, number of users, and the location of RWHS system. The study also examines the impact of the capacity of the rainwater storage tank on the tap water savings. Depending on the installation variant these savings ranged from 11– 40% for Zakopane, 10–25% for Warsaw and Katowice, and 10–28% for Koszalin.
Archive | 2015
Daniel Słyś; Agnieszka Stec; Józef Dziopak
This publication discusses results of hydrological and financial analysis for rainwater harvesting system (RWHS) for a residential buildings located in South-Eastern Poland. In this paper, the findings are presented on the basis of which a possible reduction in tap water use was determined for a residential building in Polish conditions as well as the financial ratios for the RWHS installed in this facility.
Archive | 2015
Daniel Słyś; Sabina Kordana; Józef Dziopak
The increase of hardscapes causes number of problems associated with the rainwater harvesting. It requires the realization of sustainable rainwater management, which would be in line with the law. This paper analyses the law regulations on rainwater management in Poland.
Selected Scientific Papers - Journal of Civil Engineering | 2014
Lenka Gaňová; Martina Zeleňáková; Daniel Słyś; Pavol Purcz
Abstract This article presents a methodological approach to flood direct tangible damage - damage to assets and direct intangible damage - environmental damage and loss of life assessment. The assessment of flood risk is an essential part of the risk management approach, which is the conceptual basis for the EU directive 2007/60/ES on the assessment and management of flood risk. The purpose of this directive is to establish a framework for the assessment and management of flood risk, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with flood in the community. Overall, an accurate estimation of negative effects on assets, environment and people is important in order to be able to determine the economy, environmental and social flood risk level in a system and the effects of risk mitigation measures.