Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Stoffer is active.

Publication


Featured researches published by Daniel Stoffer.


Zeitschrift für Angewandte Mathematik und Physik | 1988

Transversal homoclinic points and hyperbolic sets for non-autonomous maps I

Daniel Stoffer

A concept of generalized hyperbolic sets for non-autonomous maps is developed. Starting from transversal homoclinic orbits such generalized hyperbolic sets are constructed. The Shadowing Lemma is proven for maps admitting a generalized hyperbolic set. Time dependent symbolic dynamics is introduced and related to non-autonomous maps.ZusammenfassungDas Konzept von verallgemeinerten hyperbolischen Mengen für nicht-autonome Abbildungen wird entwickelt. Ausgehend von transversalen homoklinen Bahnen werden solche verallgemeinerte hyperbolische Mengen konstruiert. Das Shadowing Lemma wird für Abbildungen bewiesen, welche eine verallgemeinerte hyperbolische Menge haben. Es wird zeitabhängige symbolische Dynamik eingeführt und der Zusammenhang mit nicht-autonomen Abbildungen dargestellt.


Siam Review | 1990

Chaotic behaviour in simple dynamical systems

Urs Kirchgraber; Daniel Stoffer

In this paper a description is given of the chaotic behaviour generated by a transversal homoclinic point of a plane map. A proof of Smale’s theorem via the shadowing property of hyperbolic sets is provided. The result is related to certain plane periodic systems of ODE’S like the periodically perturbed pendulum equation. To this end the so-called method of Melnikov is derived.


Bit Numerical Mathematics | 1991

Invariant curves for variable step size integrators

Daniel Stoffer; Kaspar Nipp

AbstractThe behaviour of one-step methods with variable step size applied to


Zeitschrift für Angewandte Mathematik und Physik | 1989

Chaos in almost periodic systems

Kenneth J. Palmer; Daniel Stoffer


Numerische Mathematik | 1993

General linear methods: connection to one step methods and invariant curves

Daniel Stoffer

\dot x = f(x)


Nonlinearity | 2004

Possible chaotic motion of comets in the Sun-Jupiter system: a computer-assisted approach based on shadowing

Urs Kirchgraber; Daniel Stoffer


Archive | 1991

On the Application of Invariant Manifold Theory, in particular to Numerical Analysis

U. Kirchgraber; F. Lasagni; K. Nipp; Daniel Stoffer

is investigated. Usually the step size for the current step depends on one or several previous steps. However, under some natural assumptions it can be shown that the step size asymptotically depends only on the locationx. This allows to introduce anx-dependent time transformation taking a variable step size method to a constant step-size method. By means of such a transformation general properties of constant step size methods carry over to variable step size methods. This is used to show that if the differential equation admits a hyperbolic periodic solution the variable step size method admits an invariant closed curve near the orbit of the periodic solution.


SIAM Journal on Numerical Analysis | 1995

Runge-Kutta solutions of stiff differential equations near stationary points

Christian Lubich; Kaspar Nipp; Daniel Stoffer

AbstractLet


Applied Numerical Mathematics | 2001

Verification of chaotic behaviour in the planar restricted three body problem

Daniel Stoffer; Urs Kirchgraber


Dynamical Systems-an International Journal | 2011

Two results on stable rapidly oscillating periodic solutions of delay differential equations

Daniel Stoffer

\dot x = f(t,x)

Collaboration


Dive into the Daniel Stoffer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Kirsch

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Palmer

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Szmolyan

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge