Daniel Stone
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Stone.
PLOS ONE | 2014
Nicholas D. Weber; Daniel Stone; Ruth Hall Sedlak; Harshana S. De Silva Feelixge; Pavitra Roychoudhury; Joshua T. Schiffer; Martine Aubert; Keith R. Jerome
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.
PLOS Computational Biology | 2013
Joshua T. Schiffer; Dave A. Swan; Daniel Stone; Keith R. Jerome
Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA), the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR-associated system 9 (Cas9) proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which will in turn provide vital information for dose selection for potential curative trials in animals and ultimately humans.
Molecular therapy. Nucleic acids | 2014
Martine Aubert; Nicole M. Boyle; Daniel Stone; Laurence Stensland; Meei Li Huang; Amalia Magaret; Roman Galetto; David J. Rawlings; Andrew M. Scharenberg; Keith R. Jerome
Following acute infection, herpes simplex virus (HSV) establishes latency in sensory neurons, from which it can reactivate and cause recurrent disease. Available antiviral therapies do not affect latent viral genomes; therefore, they do not prevent reactivation following therapy cessation. One possible curative approach involves the introduction of DNA double strand breaks in latent HSV genomes by rare-cutting endonucleases, leading to mutagenesis of essential viral genes. We tested this approach in an in vitro HSV latency model using the engineered homing endonuclease (HE) HSV1m5, which recognizes a sequence in the HSV-1 gene UL19, encoding the virion protein VP5. Coexpression of the 3′-exonuclease Trex2 with HEs increased HE-mediated mutagenesis frequencies up to sixfold. Following HSV1m5/Trex2 delivery with adeno-associated viral (AAV) vectors, the target site was mutated in latent HSV genomes with no detectable cell toxicity. Importantly, HSV production by latently infected cells after reactivation was decreased after HSV1m5/Trex2 exposure. Exposure to histone deacetylase inhibitors prior to HSV1m5/Trex2 treatment increased mutagenesis frequencies of latent HSV genomes another two- to fivefold, suggesting that chromatin modification may be a useful adjunct to gene-targeting approaches. These results support the continuing development of HEs and other nucleases (ZFNs, TALENs, CRISPRs) for cure of chronic viral infections.
Antiviral Research | 2016
Harshana S. De Silva Feelixge; Daniel Stone; Harlan L. Pietz; Pavitra Roychoudhury; Alex L. Greninger; Joshua T. Schiffer; Martine Aubert; Keith R. Jerome
Incurable chronic viral infections are a major cause of morbidity and mortality worldwide. One potential approach to cure persistent viral infections is via the use of targeted endonucleases. Nevertheless, a potential concern for endonuclease-based antiviral therapies is the emergence of treatment resistance. Here we detect for the first time an endonuclease-resistant infectious virus that is found with high frequency after antiviral endonuclease therapy. While testing the activity of HIV pol-specific zinc finger nucleases (ZFNs) alone or in combination with three prime repair exonuclease 2 (Trex2), we identified a treatment-resistant and infectious mutant virus that was derived from a ZFN-mediated disruption of reverse transcriptase (RT). Although gene disruption of HIV protease, RT and integrase could inhibit viral replication, a chance single amino acid insertion within the thumb domain of RT produced a virus that could actively replicate. The endonuclease-resistant virus could replicate in primary CD4(+) T cells, but remained susceptible to treatment with antiretroviral RT inhibitors. When secondary ZFN-derived mutations were introduced into the mutant viruss RT or integrase domains, replication could be abolished. Our observations suggest that caution should be exercised during endonuclease-based antiviral therapies; however, combination endonuclease therapies may prevent the emergence of resistance.
Scientific Reports | 2016
Ruth Hall Sedlak; Shu Liang; Nixon Niyonzima; Harshana S. De Silva Feelixge; Pavitra Roychoudhury; Alexander L. Greninger; Nicholas D. Weber; Sandrine Boissel; Andrew M. Scharenberg; Anqi Cheng; Amalia Magaret; Roger E. Bumgarner; Daniel Stone; Keith R. Jerome
Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field.
Virology | 2014
Nicholas D. Weber; Martine Aubert; Chung H. Dang; Daniel Stone; Keith R. Jerome
Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application.
Human Genetics | 2016
Daniel Stone; Nixon Niyonzima; Keith R. Jerome
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.
Hematology-oncology Clinics of North America | 2017
Maximilian Richter; Daniel Stone; Carol H. Miao; Olivier Humbert; Hans-Peter Kiem; Thalia Papayannopoulou; André Lieber
Current protocols for hematopoietic stem cell (HSC) gene therapy, involving the transplantation of ex vivo lentivirus vector-transduced HSCs into myeloablated recipients, are complex and not without risk for the patient. In vivo HSC gene therapy can be achieved by the direct modification of HSCs in the bone marrow after intraosseous injection of gene delivery vectors. A recently developed approach involves the mobilization of HSCs from the bone marrow into peripheral the blood circulation, intravenous vector injection, and re-engraftment of genetically modified HSCs in the bone marrow. We provide examples for in vivo HSC gene therapy and discuss advantages and disadvantages.
Molecular Therapy | 2013
Nicholas D. Weber; Daniel Stone; Keith R. Jerome
Chronic viral infections have plagued humanity for millennia, causing lifelong and incurable diseases. For many viruses, persistence is caused by the presence of long-lived forms of viral DNA in infected cells. Current therapies can suppress viral replication, but they have little or no effect on long-lived DNA forms, and thus viral replication is able to resume as soon as therapy is stopped. This suggests that if long-lived DNA forms could be targeted therapeutically, cure might be possible (Figure 1). The recent development of designer targeted endonucleases such as homing endonucleases, zinc-finger nucleases (ZFNs), transcription activator–like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats) system has brought this idea closer to reality.1 The function of these enzymes is to specifically recognize and cleave selected DNA sequences, which results in gene disruption upon imprecise DNA repair. In this issue of Molecular Therapy, Bloom and colleagues investigate TALENs targeting the hepatitis B virus (HBV) genome and analyze their antiviral activity in several models of HBV infection, including an in vivo mouse model.2 Their detection of TALEN-induced mutations in the long-lived HBV covalently closed circular DNA (cccDNA) represents a substantial advance in the field and supports continued efforts to develop this approach for ultimate clinical use.
Journal of Antimicrobial Chemotherapy | 2016
Pavitra Roychoudhury; Harshana S. De Silva Feelixge; Harlan L. Pietz; Daniel Stone; Keith R. Jerome; Joshua T. Schiffer
OBJECTIVESnA promising curative approach for HIV is to use designer endonucleases that bind and cleave specific target sequences within latent genomes, resulting in mutations that render the virus replication incompetent. We developed a mathematical model to describe the expression and activity of endonucleases delivered to HIV-infected cells using engineered viral vectors in order to guide dose selection and predict therapeutic outcomes.nnnMETHODSnWe developed a mechanistic model that predicts the number of transgene copies expressed at a given dose in individual target cells from fluorescence of a reporter gene. We fitted the model to flow cytometry datasets to determine the optimal vector serotype, promoter and dose required to achieve maximum expression.nnnRESULTSnWe showed that our model provides a more accurate measure of transduction efficiency compared with gating-based methods, which underestimate the percentage of cells expressing reporter genes. We identified that gene expression follows a sigmoid dose-response relationship and that the level of gene expression saturation depends on vector serotype and promoter. We also demonstrated that significant bottlenecks exist at the level of viral uptake and gene expression: only ∼1 in 220 added vectors enter a cell and, of these, depending on the dose and promoter used, between 1 in 15 and 1 in 1500 express transgene.nnnCONCLUSIONSnOur model provides a quantitative method of dose selection and optimization that can be readily applied to a wide range of other gene therapy applications. Reducing bottlenecks in delivery will be key to reducing the number of doses required for a functional cure.