Daniel T. Cannon
Los Angeles Biomedical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel T. Cannon.
Appetite | 2009
Mary Huey-Yu Cheng; Darcy Bushnell; Daniel T. Cannon; Mark Kern
This study assessed the effect of exercise timing relative to meal consumption on appetite and its hormonal regulators (i.e., PYY(3-36), ghrelin and leptin) in moderately active young men. Twelve men performed three trials in a random order: (1) meal consumption, (2) exercise 2h after a meal, (3) exercise 1h before a meal. The test meal provided 16.5 kcal kg(-1) with 70% fat, 26% carbohydrate and 4% protein. Exercise was performed at a work rate eliciting 60% of VO(2max) for 50 min. Hunger ratings and plasma leptin concentrations were measured at baseline and hours 1, 3, 5, and 7 post-meal, and plasma concentrations of ghrelin and PYY(3-36) were measured at baseline and 1, 3, and 7h after meal consumption. Exercise performed 2h after meal consumption extended the appetite suppressing effect of food intake. Furthermore, plasma PYY(3-36) concentration tended to be elevated by exercise after meal consumption. Exercise prior to food intake decreased appetite and increased plasma ghrelin concentrations. No response to timing of exercise relative to food intake on plasma leptin concentration was detected. These data indicated the timing of exercise to meal consumption may influence appetite and its hormonal regulators. Post-meal exercise may extend the suppressive effects of meal consumption on appetite.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Richard M. Cubbon; Scott R. Murgatroyd; Carrie Ferguson; T. Scott Bowen; Mark Rakobowchuk; Daniel T. Cannon; Adil Rajwani; Afroze Abbas; Matthew Kahn; Karen M. Birch; Karen E. Porter; Stephen B. Wheatcroft; Harry B. Rossiter; Mark T. Kearney
Objective—Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se. Methods and Results—In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine. Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001). Conclusion—In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.
Journal of Applied Physiology | 2013
Daniel T. Cannon; Franklyn A. Howe; Brian J. Whipp; Susan A. Ward; Dominick J.O. McIntyre; Christophe Ladroue; John R. Griffiths; Graham J. Kemp; Harry B. Rossiter
The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain.
Experimental Physiology | 2011
T. Scott Bowen; Scott R. Murgatroyd; Daniel T. Cannon; Thomas J. Cuff; Allison F. Lainey; Andrea D. Marjerrison; Matthew D. Spencer; Alan P. Benson; Donald H. Paterson; John M. Kowalchuk; Harry B. Rossiter
During exercise below the lactate threshold (LT), the rate of adjustment (τ) of pulmonary O2 uptake ( ) is slowed when initiated from a raised work rate. Whether this is consequent to the intrinsic properties of newly recruited muscle fibres, slowed circulatory dynamics or the effects of a raised metabolism is not clear. We aimed to determine the influence of these factors on using combined in vivo and in silico approaches. Fifteen healthy men performed repeated 6 min bouts on a cycle ergometer with work rates residing between 20 W and 90% LT, consisting of the following: (1) two step increments in work rate (S1 and S2), one followed immediately by the other, equally bisecting 20 W to 90% LT; (2) two 20 W to 90% LT bouts separated by 30 s at 20 W to raise muscle oxygenation and pretransition metabolism (R1 and R2); and (3) two 20 W to 90% LT bouts separated by 12 min at 20 W allowing full recovery (F1 and F2). Pulmonary O2 uptake was measured breath by breath by mass spectrometry and turbinometry, and quadriceps oxygenation using near‐infrared spectroscopy. The influence of circulatory dynamics on the coupling of muscle and lung was assessed by computer simulations. The in R2 (32 ± 9 s) was not different (P > 0.05) from S2 (30 ± 10 s), but both were greater (P < 0.05) than S1 (20 ± 10 s) and the F control bouts (26 ± 10 s). The slowed kinetics in R2 occurred despite muscle oxygenation being raised throughout, and could not be explained by slowed circulatory dynamics ( predicted by simulations: S1 = R2 < S2). These data therefore suggest that the dynamics of muscle O2 consumption are slowed when exercise is initiated from a less favourable energetic state.
Journal of Applied Physiology | 2012
T. Scott Bowen; Daniel T. Cannon; Scott R. Murgatroyd; Karen M. Birch; Klaus K. Witte; Harry B. Rossiter
The mechanism for slow pulmonary O(2) uptake (Vo(2)) kinetics in patients with chronic heart failure (CHF) is unclear but may be due to limitations in the intramuscular control of O(2) utilization or O(2) delivery. Recent evidence of a transient overshoot in microvascular deoxygenation supports the latter. Prior (or warm-up) exercise can increase O(2) delivery in healthy individuals. We therefore aimed to determine whether prior exercise could increase muscle oxygenation and speed Vo(2) kinetics during exercise in CHF. Fifteen men with CHF (New York Heart Association I-III) due to left ventricular systolic dysfunction performed two 6-min moderate-intensity exercise transitions (bouts 1 and 2, separated by 6 min of rest) from rest to 90% of lactate threshold on a cycle ergometer. Vo(2) was measured using a turbine and a mass spectrometer, and muscle tissue oxygenation index (TOI) was determined by near-infrared spectroscopy. Prior exercise increased resting TOI by 5.3 ± 2.4% (P = 0.001), attenuated the deoxygenation overshoot (-3.9 ± 3.6 vs. -2.0 ± 1.4%, P = 0.011), and speeded the Vo(2) time constant (τVo(2); 49 ± 19 vs. 41 ± 16 s, P = 0.003). Resting TOI was correlated to τVo(2) before (R(2) = 0.51, P = 0.014) and after (R(2) = 0.36, P = 0.051) warm-up exercise. However, the mean response time of TOI was speeded between bouts in half of the patients (26 ± 8 vs. 20 ± 8 s) and slowed in the remainder (32 ± 11 vs. 44 ± 16 s), the latter group having worse New York Heart Association scores (P = 0.042) and slower Vo(2) kinetics (P = 0.001). These data indicate that prior moderate-intensity exercise improves muscle oxygenation and speeds Vo(2) kinetics in CHF. The most severely limited patients, however, appear to have an intramuscular pathology that limits Vo(2) kinetics during moderate exercise.
The Journal of Physiology | 2014
Daniel T. Cannon; William E. Bimson; Sophie A. Hampson; T. Scott Bowen; Scott R. Murgatroyd; Simon Marwood; Graham J. Kemp; Harry B. Rossiter
Heavy‐intensity exercise causes a progressive increase in energy demand that contributes to exercise limitation. This inefficiency arises within the locomotor muscles and is thought to be due to an increase in the ATP cost of power production; however, the responsible mechanism is unresolved. We measured whole‐body O2 uptake and skeletal muscle ATP turnover by combined pulmonary gas exchange and magnetic resonance spectroscopy during moderate and heavy exercise in humans. Muscle ATP synthesis rate increased throughout constant‐power heavy exercise, but this increase was unrelated to the progression of whole‐body inefficiency. Our data indicate that the increased ATP requirement is not the sole cause of inefficiency during heavy exercise, and other mechanisms, such as increased O2 cost of ATP resynthesis, may contribute.
Journal of Applied Physiology | 2012
T. Scott Bowen; Daniel T. Cannon; Gordon A. Begg; Klaus K. Witte; Harry B. Rossiter
Cardiopulmonary exercise testing for peak oxygen uptake (Vo(2peak)) can evaluate prognosis in chronic heart failure (CHF) patients, with the peak respiratory exchange ratio (RER(peak)) commonly used to confirm maximal effort and maximal oxygen uptake (Vo(2max)). We determined the precision of RER(peak) in confirming Vo(2max), and whether a novel ramp-incremental (RI) step-exercise (SE) (RISE) test could better determine Vo(2max) in CHF. Male CHF patients (n = 24; NYHA class I-III) performed a symptom-limited RISE-95 cycle ergometer test in the format: RI (4-18 W/min; ∼10 min); 5 min recovery (10 W); SE (95% peak RI work rate). Patients (n = 18) then performed RISE-95 tests using slow (3-8 W/min; ∼15 min) and fast (10-30 W/min; ∼6 min) ramp rates. Pulmonary gas exchange was measured breath-by-breath. Vo(2peak) was compared within patients by unpaired t-test of the highest 12 breaths during RI and SE phases to confirm Vo(2max) and its 95% confidence limits (CI(95)). RER(peak) was significantly influenced by ramp rate (fast, medium, slow: 1.21 ± 0.1 vs. 1.15 ± 0.1 vs. 1.09 ± 0.1; P = 0.001), unlike Vo(2peak) (mean n = 18; 14.4 ± 2.6 ml·kg(-1)·min(-1); P = 0.476). Group Vo(2peak) was similar between RI and SE (n = 24; 14.5 ± 3.0 vs. 14.7 ± 3.1 ml·kg(-1)·min(-1); P = 0.407); however, within-subject comparisons confirmed Vo(2max) in only 14 of 24 patients (CI(95) for Vo(2max) estimation averaged 1.4 ± 0.8 ml·kg(-1)·min(-1)). The RER(peak) in CHF was significantly influenced by ramp rate, suggesting its use to determine maximal effort and Vo(2max) be abandoned. In contrast, the RISE-95 test had high precision for Vo(2max) confirmation with patient-specific CI(95) (without secondary criteria), and showed that Vo(2max) is commonly underestimated in CHF. The RISE-95 test was well tolerated by CHF patients, supporting its use for Vo(2max) confirmation.
Journal of Applied Physiology | 2015
Alessandra Adami; Shunsaku Koga; Narihiko Kondo; Daniel T. Cannon; John M. Kowalchuk; Tatsuro Amano; Harry B. Rossiter
Skeletal muscle deoxygenated hemoglobin and myoglobin concentration ([HHb]), assessed by near-infrared spectroscopy (NIRS), is commonly used as a surrogate of regional O2 extraction (reflecting the O2 delivery-to-consumption ratio, Q̇/V̇o2). However, [HHb] change (Δ[HHb]) is also influenced by capillary-venous heme concentration, and/or small blood vessel volume (reflected in total heme; [THb]). We tested the hypotheses that Δ[HHb] is associated with O2 extraction, and insensitive to [THb], over a wide range of Q̇/V̇o2 elicited by passive head-up tilt (HUT; 10-min, 15° increments, between -10° and 75°). Steady-state common femoral artery blood flow (FBF) was measured by echo-Doppler, and time-resolved NIRS measured [HHb] and [THb] of vastus lateralis (VL) and gastrocnemius (GS) in 13 men. EMG confirmed muscles were inactive. During HUT in VL [HHb] increased linearly (57 ± 10 to 101 ± 16 μM; P < 0.05 above 15°) and was associated (r(2) ∼ 0.80) with the reduction in FBF (618 ± 75 ml/min at 0° to 268 ± 52 ml/min at 75°; P < 0.05 above 30°) and the increase in [THb] (228 ± 30 vs. 252 ± 32 μM; P < 0.05 above 15°). GS response was qualitatively similar to VL. However, there was wide variation within and among individuals, such that the overall limits of agreement between Δ[HHb] and ΔFBF ranged from -35 to +19% across both muscles. Neither knowledge of tissue O2 saturation nor vascular compliance could appropriately account for the Δ[HHb]-ΔFBF dissociation. Thus, under passive tilt, [HHb] is influenced by Q̇/V̇o2, as well as microvascular hematocrit and/or tissue blood vessel volume, complicating its use as a noninvasive surrogate for muscle microvascular O2 extraction.
Journal of Applied Physiology | 2016
Carrie Ferguson; Daniel T. Cannon; Lindsey A. Wylde; Alan P. Benson; Harry B. Rossiter
to the editor: We thank Morales-Alamo et al. ([5][1]) for raising important questions worthy of further discussion. A key concern of both our studies ([3][2], [4][3]) is whether the limit of tolerance (LoT) in ramp-incremental exercise is reached with a reserve in power producing capacity. To this
The Journal of Physiology | 2017
Matthew J. Davies; Alan P. Benson; Daniel T. Cannon; Simon Marwood; Graham J. Kemp; Harry B. Rossiter; Carrie Ferguson
Continuous high‐intensity constant‐power exercise is unsustainable, with maximal oxygen uptake ( V̇O2 max ) and the limit of tolerance attained after only a few minutes. Performing the same power intermittently reduces the O2 cost of exercise and increases tolerance. The extent to which this dissociation is reflected in the intramuscular bioenergetics is unknown. We used pulmonary gas exchange and 31P magnetic resonance spectroscopy to measure whole‐body V̇O2 , quadriceps phosphate metabolism and pH during continuous and intermittent exercise of different work:recovery durations. Shortening the work:recovery durations (16:32 s vs. 32:64 s vs. 64:128 s vs. continuous) at a work rate estimated to require 110% peak aerobic power reduced V̇O2 , muscle phosphocreatine breakdown and muscle acidification, eliminated the glycolytic‐associated contribution to ATP synthesis, and increased exercise tolerance. Exercise intensity (i.e. magnitude of intramuscular metabolic perturbations) can be dissociated from the external power using intermittent exercise with short work:recovery durations.