Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel T. Fisher is active.

Publication


Featured researches published by Daniel T. Fisher.


Nature Reviews Immunology | 2015

Fever and the thermal regulation of immunity: the immune system feels the heat

Sharon S. Evans; Elizabeth A. Repasky; Daniel T. Fisher

Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.


Journal of Clinical Investigation | 2011

IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells

Daniel T. Fisher; Qing Chen; Joseph J. Skitzki; Jason Muhitch; Lei Zhou; Michelle M. Appenheimer; Trupti Vardam; Emily L. Weis; Jessica Passanese; Wan-Chao Wang; Sandra O. Gollnick; Mark W. Dewhirst; Stefan Rose-John; Elizabeth A. Repasky; Heinz Baumann; Sharon S. Evans

Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor-α and thermally induced gp130 to promote E/P-selectin- and ICAM-1-dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor-α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6-dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6-rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell-mediated antitumor immunity and immunotherapy.


Seminars in Immunology | 2014

The two faces of IL-6 in the tumor microenvironment.

Daniel T. Fisher; Michelle M. Appenheimer; Sharon S. Evans

Within the tumor microenvironment, IL-6 signaling is generally considered a malevolent player, assuming a dark visage that promotes tumor progression. Chronic IL-6 signaling is linked to tumorigenesis in numerous mouse models as well as in human disease. IL-6 acts intrinsically on tumor cells through numerous downstream mediators to support cancer cell proliferation, survival, and metastatic dissemination. Moreover, IL-6 can act extrinsically on other cells within the complex tumor microenvironment to sustain a pro-tumor milieu by supporting angiogenesis and tumor evasion of immune surveillance. A lesser known role for IL-6 signaling has recently emerged in which it plays a beneficial role, presenting a fairer face that opposes tumor growth by mobilizing anti-tumor T cell immune responses to attain tumor control. Accumulating evidence establishes IL-6 as a key player in the activation, proliferation and survival of lymphocytes during active immune responses. IL-6 signaling can also resculpt the T cell immune response, shifting it from a suppressive to a responsive state that can effectively act against tumors. Finally, IL-6 plays an indispensable role in boosting T cell trafficking to lymph nodes and to tumor sites, where they have the opportunity to become activated and execute their cytotoxic effector functions, respectively. Here, we discuss the dual faces of IL-6 signaling in the tumor microenvironment; the dark face that drives malignancy, and the fairer aspect that promotes anti-tumor adaptive immunity.


Nature Communications | 2015

Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints

Maryann Mikucki; Daniel T. Fisher; J. Matsuzaki; Joseph J. Skitzki; N. B. Gaulin; Jason Muhitch; A. W. Ku; John G. Frelinger; Kunle Odunsi; Thomas F. Gajewski; Andrew D. Luster; Sharon S. Evans

T cell trafficking at vascular sites has emerged as a key step in antitumor immunity. Chemokines are credited with guiding the multistep recruitment of CD8+ T cells across tumor vessels. However, the multiplicity of chemokines within tumors has obscured the contributions of individual chemokine receptor/chemokine pairs to this process. Moreover, recent studies have challenged whether T cells require chemokine receptor signaling at effector sites. Here, we investigate the hierarchy of chemokine receptor requirements during T cell trafficking to murine and human melanoma. These studies reveal a non-redundant role for GαI-coupled CXCR3 in stabilizing intravascular adhesion and extravasation of adoptively transferred CD8+ effectors that is indispensable for therapeutic efficacy. In contrast, functional CCR2 and CCR5 on CD8+ effectors fail to support trafficking despite the presence of intratumoral cognate chemokines. Taken together, these studies identify CXCR3-mediated trafficking at the tumor vascular interface as a critical checkpoint to effective T cell-based cancer immunotherapy.


Immunological Investigations | 2006

Hurdles to lymphocyte trafficking in the tumor microenvironment : Implications for effective immunotherapy

Daniel T. Fisher; Qing Chen; Michelle M. Appenheimer; Joseph Skitzki; Wan-Chao Wang; Kunle Odunsi; Sharon S. Evans

An important consideration in the development of T cell-based cancer immunotherapy is that effector T cells must efficiently traffic to the tumor microenvironment in order to control malignant progression. T cell trafficking to target tissues is orchestrated by dynamic interactions between circulating lymphocytes and endothelial cells lining blood vessels. It is informative, in this regard, to compare and contrast the molecular mechanisms governing lymphocyte extravasation at distinct vascular sites: (1) high endothelial venules (HEV) of secondary lymphoid organs, which are portals for efficient trafficking of naive and central memory T lymphocytes; (2) non-activated endothelium of normal tissues that mediate relatively low basal levels of trafficking but are rapidly transformed into HEV-like vessels in response to local inflammatory stimuli; and (3) vessels within the intratumoral region and the surrounding peritumoral areas. These vessels can be distinguished by differential expression of hallmark trafficking molecules that function as molecular beacons directing lymphocyte migration across vascular barriers. This article reviews evidence that recruitment of effector T cells to the intratumoral microenvironment is impeded by sub-threshold expression of trafficking molecules on tumor microvessels. Emerging data support the thesis that when considered from the perspective of extravasation, vessels embedded within the intratumoral microenvironment of established tumors do not exhibit stereotypical characteristics of a chronic inflammatory state. A major challenge will be to develop therapeutic approaches to improve trafficking of effector T lymphocytes to tumor sites without skewing the balance in favor of a chronic inflammatory milieu that facilitates tumor maintenance and progression.


Cancer Immunology, Immunotherapy | 2006

Dynamic control of lymphocyte trafficking by fever-range thermal stress

Qing Chen; Daniel T. Fisher; Sylvia A. Kucinska; Wan-Chao Wang; Sharon S. Evans

Migration of blood-borne lymphocytes into tissues involves a tightly orchestrated sequence of adhesion events. Adhesion molecules and chemokine receptors on the surface of circulating lymphocytes initiate contact with specialized endothelial cells under hemodynamic shear prior to extravasation across the vascular barrier into tissues. Lymphocyte–endothelial adhesion occurs preferentially in high endothelial venules (HEV) of peripheral lymphoid organs. The continuous recirculation of naïve and central memory lymphocytes across lymph node and Peyer’s patch HEV underlies immune surveillance and immune homeostasis. Lymphocyte–endothelial interactions are markedly enhanced in HEV-like vessels of extralymphoid organs during physiological responses associated with acute and chronic inflammation. Similar adhesive mechanisms must be invoked for efficient trafficking of immune effector cells to tumor sites in order for the immune system to have an impact on tumor progression. Here we discuss recent evidence for the role of fever-range thermal stress in promoting lymphocyte–endothelial adhesion and trafficking across HEV in peripheral lymphoid organs. Findings are also presented that support the hypothesis that lymphocyte–endothelial interactions are limited within tumor microenvironments. Further understanding of the molecular mechanisms that dynamically promote lymphocyte trafficking in HEV may provide the basis for novel approaches to improve recruitment of immune effector cells to tumor sites.


Nature Communications | 2016

Intraoperative intravital microscopy permits the study of human tumour vessels.

Daniel T. Fisher; Jason Muhitch; Minhyung Kim; Kurt C. Doyen; Paul N. Bogner; Sharon S. Evans; Joseph J. Skitzki

Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment.


International Journal of Hyperthermia | 2013

Preconditioning thermal therapy: Flipping the switch on IL-6 for anti-tumour immunity

Maryann Mikucki; Daniel T. Fisher; Amy Ku; Michelle M. Appenheimer; Jason Muhitch; Sharon S. Evans

Abstract Cancer immunotherapy aims to generate long-lived, tumour-specific adaptive immunity to limit dysregulated tumour progression and metastasis. Tumour vasculature has emerged as a critical checkpoint controlling the efficacy of immunotherapy since it is the main access point for cytotoxic T cells to reach tumour cell targets. Therapeutic success has been particularly challenging to achieve because of the local, cytokine-rich inflammatory milieu that drives a pro-tumourigenic programme supporting the growth and survival of malignant cells. Here, we focus on recent evidence that systemic thermal therapy can switch the activities of the inflammatory cytokine, interleukin-6 (IL-6), to a predominantly anti-tumourigenic function that promotes anti-tumour immunity by mobilising T cell trafficking in the recalcitrant tumour microenvironment.


Microcirculation | 2009

Thermal Facilitation of Lymphocyte Trafficking Involves Temporal Induction of Intravascular ICAM-1

Qing Chen; Michelle M. Appenheimer; Jason Muhitch; Daniel T. Fisher; Kristen Clancy; Jeffery C. Miecznikowski; Wan-Chao Wang; Sharon S. Evans

Objective: Fever is associated with improved survival, although its beneficial mechanisms are poorly understood. Previous studies indicate that the thermal element of fever augments lymphocyte migration across high endothelial venules (HEVs) of lymphoid organs by increasing the intravascular display of a gatekeeper trafficking molecule, intercellular adhesion molecule‐1 (ICAM‐1). Here, we evaluated the spatio‐temporal relationship between the thermal induction of intravascular ICAM‐1 and lymphocyte trafficking.


International Journal of Hyperthermia | 2008

Targeted regulation of a lymphocyte-endothelial-interleukin-6 axis by thermal stress.

Sharon S. Evans; Daniel T. Fisher; Joseph J. Skitzki; Qing Chen

Immune protection from microbial invaders or malignant progression is dependent on the ability of lymphocytes to efficiently traffic across morphologically and biochemically distinct vascular sites throughout the body. Lymphocyte trafficking to target tissues is orchestrated by adhesion molecules and chemokines that stabilize dynamic interactions between circulating lymphocytes and endothelial cells lining blood vessels. While the molecular mechanisms that regulate the efficient migration of lymphocytes across specialized high endothelial venules (HEVs) in secondary lymphoid organs have been extensively characterized, there is a paucity of information available regarding the mechanisms that dictate the rate of lymphocyte entry into tumor tissues. This article summarizes recent evidence that inflammatory cues associated with fever-range thermal stress promote lymphocyte extravasation across HEVs of lymphoid organs through a highly regulated lymphocyte–endothelial–interleukin-6 (IL-6) biological axis. The potential for using thermally-based strategies to improve lymphocyte delivery to the tumor microenvironment during T cell-based immunotherapy will also be discussed.

Collaboration


Dive into the Daniel T. Fisher's collaboration.

Top Co-Authors

Avatar

Sharon S. Evans

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Skitzki

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jason Muhitch

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Minhyung Kim

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Qing Chen

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan-Chao Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Colin Powers

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Gabriel

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Ku

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge