Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Twitchen is active.

Publication


Featured researches published by Daniel Twitchen.


Nature Materials | 2009

Ultralong spin coherence time in isotopically engineered diamond

Gopalakrishnan Balasubramanian; Philipp Neumann; Daniel Twitchen; Matthew Markham; Roman Kolesov; Norikazu Mizuochi; Junichi Isoya; J. Achard; J. Beck; Julia Tissler; V. Jacques; P. R. Hemmer; Fedor Jelezko; Jörg Wrachtrup

As quantum mechanics ventures into the world of applications and engineering, materials science faces the necessity to design matter to quantum grade purity. For such materials, quantum effects define their physical behaviour and open completely new (quantum) perspectives for applications. Carbon-based materials are particularly good examples, highlighted by the fascinating quantum properties of, for example, nanotubes or graphene. Here, we demonstrate the synthesis and application of ultrapure isotopically controlled single-crystal chemical vapour deposition (CVD) diamond with a remarkably low concentration of paramagnetic impurities. The content of nuclear spins associated with the (13)C isotope was depleted to 0.3% and the concentration of other paramagnetic defects was measured to be <10(13) cm(-3). Being placed in such a spin-free lattice, single electron spins show the longest room-temperature spin dephasing times ever observed in solid-state systems (T2=1.8 ms). This benchmark will potentially allow observation of coherent coupling between spins separated by a few tens of nanometres, making it a versatile material for room-temperature quantum information processing devices. We also show that single electron spins in the same isotopically engineered CVD diamond can be used to detect external magnetic fields with a sensitivity reaching 4 nT Hz(-1/2) and subnanometre spatial resolution.


Nature | 2015

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

Bas Hensen; Hannes Bernien; A. E. Dréau; Andreas Reiserer; Norbert Kalb; Machiel Blok; J. Ruitenberg; R. F. L. Vermeulen; R. N. Schouten; Carlos Abellan; Waldimar Amaya; Valerio Pruneri; Morgan W. Mitchell; Matthew Markham; Daniel Twitchen; David Elkouss; Stephanie Wehner; T. H. Taminiau; R. Hanson

More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in ‘loopholes’. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell’s inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH–Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.


Nature | 2013

Heralded entanglement between solid-state qubits separated by three metres

Hannes Bernien; Bas Hensen; W. Pfaff; G. Koolstra; Machiel Blok; Lucio Robledo; T. H. Taminiau; Matthew Markham; Daniel Twitchen; Lilian Childress; R. Hanson

Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin–photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.


Science | 2012

Room-Temperature Quantum Bit Memory Exceeding One Second

Peter Maurer; Georg Kucsko; Christian Latta; Liang Jiang; Norman Yao; Steven D. Bennett; Fernando Pastawski; David Hunger; Nicholas Chisholm; Matthew Markham; Daniel Twitchen; J. I. Cirac; Mikhail D. Lukin

Extending Quantum Memory Practical applications in quantum communication and quantum computation require the building blocks—quantum bits and quantum memory—to be sufficiently robust and long-lived to allow for manipulation and storage (see the Perspective by Boehme and McCarney). Steger et al. (p. 1280) demonstrate that the nuclear spins of 31P impurities in an almost isotopically pure sample of 28Si can have a coherence time of as long as 192 seconds at a temperature of ∼1.7 K. In diamond at room temperature, Maurer et al. (p. 1283) show that a spin-based qubit system comprised of an isotopic impurity (13C) in the vicinity of a color defect (a nitrogen-vacancy center) could be manipulated to have a coherence time exceeding one second. Such lifetimes promise to make spin-based architectures feasible building blocks for quantum information science. Defects in diamond can be operated as quantum memories at room temperature. Stable quantum bits, capable both of storing quantum information for macroscopic time scales and of integration inside small portable devices, are an essential building block for an array of potential applications. We demonstrate high-fidelity control of a solid-state qubit, which preserves its polarization for several minutes and features coherence lifetimes exceeding 1 second at room temperature. The qubit consists of a single 13C nuclear spin in the vicinity of a nitrogen-vacancy color center within an isotopically purified diamond crystal. The long qubit memory time was achieved via a technique involving dissipative decoupling of the single nuclear spin from its local environment. The versatility, robustness, and potential scalability of this system may allow for new applications in quantum information science.


Journal of Physics: Condensed Matter | 2009

Chemical vapour deposition synthetic diamond: materials, technology and applications

R S Balmer; J R Brandon; S L Clewes; H K Dhillon; J M Dodson; Ian Friel; P N Inglis; T D Madgwick; M L Markham; T P Mollart; N Perkins; G A Scarsbrook; Daniel Twitchen; A J Whitehead; J J Wilman; S M Woollard

Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.


Nature Physics | 2010

Quantum register based on coupled electron spins in a room-temperature solid.

Philipp Neumann; Roman Kolesov; Boris Naydenov; J. Beck; Florian Rempp; M. Steiner; V. Jacques; Gopalakrishnan Balasubramanian; Matthew Markham; Daniel Twitchen; S. Pezzagna; Jan Meijer; Jason Twamley; Fedor Jelezko; Jörg Wrachtrup

Nitrogen–vacancy centres in diamond have emerged as a promising platform for quantum information processing at room temperature. Now, coherent coupling between two electron spins separated by almost 10 nm has been demonstrated. At this distance, the spins can be addressed individually, which might enable the construction of a network of connected quantum registers.


Physical Review Letters | 2009

Dynamic Polarization of Single Nuclear Spins by Optical Pumping of Nitrogen-Vacancy Color Centers in Diamond at Room Temperature

V. Jacques; Philipp Neumann; J. Beck; Matthew Markham; Daniel Twitchen; Jan Meijer; F. Kaiser; Gopalakrishnan Balasubramanian; Fedor Jelezko; Jörg Wrachtrup

We report a versatile method to polarize single nuclear spins in diamond, based on optical pumping of a single nitrogen-vacancy (NV) defect and mediated by a level anticrossing in its excited state. A nuclear-spin polarization higher than 98% is achieved at room temperature for the 15N nuclear spin associated with the NV center, corresponding to microK effective nuclear-spin temperature. We then show simultaneous initialization of two nuclear spins in the vicinity of a NV defect. Such robust control of nuclear-spin states is a key ingredient for further scaling up of nuclear-spin based quantum registers in diamond.


Journal of Applied Physics | 2005

Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique

H. Pernegger; S. Roe; P. Weilhammer; V. Eremin; H. Frais-Kölbl; E. Griesmayer; H. Kagan; S. Schnetzer; R. Stone; W. Trischuk; Daniel Twitchen; A. Whitehead

For optimal operation of chemical-vapor deposition (CVD) diamonds as charged particle detectors it is important to have a detailed understanding of the charge-carrier transport mechanism. This includes the determination of electron and hole drift velocities as a function of electric field, charge carrier lifetimes, as well as effective concentration of space charge in the detector bulk. We use the transient-current technique, which allows a direct determination of these parameters in a single measurement, to investigate the charge-carrier properties in a sample of single-crystal CVD diamond. The method is based on the injection of charge using an α source close to the surface and measuring the induced current in the detector electrodes as a function of time.For optimal operation of chemical-vapor deposition (CVD) diamonds as charged particle detectors it is important to have a detailed understanding of the charge-carrier transport mechanism. This includes the determination of electron and hole drift velocities as a function of electric field, charge carrier lifetimes, as well as effective concentration of space charge in the detector bulk. We use the transient-current technique, which allows a direct determination of these parameters in a single measurement, to investigate the charge-carrier properties in a sample of single-crystal CVD diamond. The method is based on the injection of charge using an α source close to the surface and measuring the induced current in the detector electrodes as a function of time.


Physical Review Letters | 2012

Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond

Hannes Bernien; Lilian Childress; Lucio Robledo; Matthew Markham; Daniel Twitchen; R. Hanson

We report on the observation of quantum interference of the emission from two separate nitrogen vacancy (NV) centers in diamond. Taking advantage of optically induced spin polarization in combination with polarization filtering, we isolate a single transition within the zero-phonon line of the nonresonantly excited NV centers. The time-resolved two-photon interference contrast of this filtered emission reaches 66%. Furthermore, we observe quantum interference from dissimilar NV centers tuned into resonance through the dc Stark effect. These results pave the way towards measurement-based entanglement between remote NV centers and the realization of quantum networks with solid-state spins.


Nano Letters | 2013

Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond

Birgit Hausmann; Brendan Shields; Qimin Quan; Yiwen Chu; N. P. de Leon; Ruffin E. Evans; Michael J. Burek; A. S. Zibrov; Matthew Markham; Daniel Twitchen; Hongkun Park; M. D. Lukin; M. Loncǎr

The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV centers zero-phonon line fluorescence by a factor of ~ 7 in low-temperature measurements.

Collaboration


Dive into the Daniel Twitchen's collaboration.

Top Co-Authors

Avatar

Matthew Markham

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Machiel Blok

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

T. H. Taminiau

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge