Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Vaiman is active.

Publication


Featured researches published by Daniel Vaiman.


European Journal of Human Genetics | 2010

Specific epigenetic alterations of IGF2 - H19 locus in spermatozoa from infertile men

Céline Chalas Boissonnas; Hafida El abdalaoui; Virginie Haelewyn; Patricia Fauque; Jean Michel Dupont; Ivo Gut; Daniel Vaiman; Pierre Jouannet; Jörg Tost; Hélène Jammes

DNA methylation marks, a key modification of imprinting, are erased in primordial germ cells and sex specifically re-established during gametogenesis. Abnormal epigenetic programming has been proposed as a possible mechanism compromising male fertility. We analysed by pyrosequencing the DNA methylation status of 47 CpGs located in differentially methylated regions (DMRs), the DMR0 and DMR2 of the IGF2 gene and in the 3rd and 6th CTCF-binding sites of the H19 DMR in human sperm from men with normal semen and patients with teratozoospermia (T) and/or oligo-astheno-teratozoospermia (OAT). All normal semen samples presented the expected high global methylation level for all CpGs analysed. In the teratozoospermia group, 11 of 19 patients presented a loss of methylation at variable CpG positions either in the IGF2 DMR2 or in both the IGF2 DMR2 and the 6th CTCF of the H19 DMR. In the OAT group, 16 of 22 patients presented a severe loss of methylation of the 6th CTCF, closely correlated with sperm concentration. The methylation state of DMR0 and of the 3rd CTCF was never affected by the pathological status of sperm samples. This study demonstrates that epigenetic perturbations of the 6th CTCF site of the H19 DMR might be a relevant biomarker for quantitative defects of spermatogenesis in humans. Moreover, we defined a methylation threshold sustaining the classification of patients in two groups, unmethylated and methylated. Using this new classification of patients, the observed intrinsic imprinting defects of spermatozoa appear not to impair significantly the outcome of assisted reproductive technologies.


BMC Developmental Biology | 2007

Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos

Patricia Fauque; P. Jouannet; Corinne Lesaffre; Marie-Anne Ripoche; Luisa Dandolo; Daniel Vaiman; Hélène Jammes

BackgroundIn the last few years, an increase in imprinting anomalies has been reported in children born from Assisted Reproductive Technology (ART). Various clinical and experimental studies also suggest alterations of embryo development after ART. Therefore, there is a need for studying early epigenetic anomalies which could result from ART manipulations, especially on single embryos. In this study, we evaluated the impact of superovulation, in vitro fertilization (IVF) and embryo culture conditions on proper genomic imprinting and blastocyst development in single mouse embryos.In this study, different experimental groups were established to obtain embryos from superovulated and non-superovulated females, either from in vivo or in vitro fertilized oocytes, themselves grown in vitro or not. The embryos were cultured either in M16 medium or in G1.2/G2.2 sequential medium. The methylation status of H19 Imprinting Control Region (ICR) and H19 promoter was assessed, as well as the gene expression level of H19, in individual blastocysts. In parallel, we have evaluated embryo cleavage kinetics and recorded morphological data.ResultsWe show that:1. The culture medium influences early embryo development with faster cleavage kinetics for culture in G1.2/G2.2 medium compared to M16 medium.2. Epigenetic alterations of the H19 ICR and H19 PP are influenced by the fertilization method since methylation anomalies were observed only in the in vitro fertilized subgroup, however to different degrees according to the culture medium.3. Superovulation clearly disrupted H19 gene expression in individual blastocysts. Moreover, when embryos were cultured in vitro after either in vivo or in vitro fertilization, the percentage of blastocysts which expressed H19 was higher in G1.2/G2.2 medium compared to M16.ConclusionCompared to previous reports utilizing pools of embryos, our study enables us to emphasize a high individual variability of blastocysts in the H19 ICR and H19 promoter methylation and H19 gene expression, with a striking effect of each manipulation associated to ART practices. Our results suggest that H19 could be used as a sensor of the epigenetic disturbance of the utilized techniques.


Journal of Virology | 2001

Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp.

Jean-Luc Vilotte; Solange Soulier; Rachid Essalmani; Marie-George Stinnakre; Daniel Vaiman; Laurence Lepourry; José Costa Da Silva; Nathalie Besnard; Mike Dawson; Anne Buschmann; Martin H. Groschup; Stéphanie Petit; Marie-Francoise Madelaine; Sabine Rakatobe; Annick Le Dur; Didier Vilette; Hubert Laude

ABSTRACT The susceptibility of sheep to scrapie is known to involve, as a major determinant, the nature of the prion protein (PrP) allele, with the VRQ allele conferring the highest susceptibility to the disease. Transgenic mice expressing in their brains three different ovine PrPVRQ-encoding transgenes under an endogenous PrP-deficient genetic background were established. Nine transgenic (tgOv) lines were selected and challenged with two scrapie field isolates derived from VRQ-homozygous affected sheep. All inoculated mice developed neurological signs associated with a transmissible spongiform encephalopathy (TSE) disease and accumulated a protease-resistant form of PrP (PrPres) in their brains. The incubation duration appeared to be inversely related to the PrP steady-state level in the brain, irrespective of the transgene construct. The survival time for animals from the line expressing the highest level of PrP was reduced by at least 1 year compared to those of two groups of conventional mice. With one isolate, the duration of incubation was as short as 2 months, which is comparable to that observed for the rodent TSE models with the briefest survival times. No survival time reduction was observed upon subpassaging of either isolate, suggesting no need for adaptation of the agent to its new host. Overexpression of the transgene was found not to be required for transmission to be accelerated compared to that observed with wild-type mice. Conversely, transgenic mice overexpressing murine PrP were found to be less susceptible than tgOv lines expressing ovine PrP at physiological levels. These data argue that ovine PrPVRQ provided a better substrate for sheep prion replication than did mouse PrP. Altogether, these tgOv mice could be an improved model for experimental studies on natural sheep scrapie.


Molecular Endocrinology | 2008

Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential.

Bruno Borghese; Françoise Mondon; Jean Christophe Noël; Isabelle Fayt; Thérèse-Marie Mignot; Daniel Vaiman; Charles Chapron

Endometriosis is a common gynecological disorder characterized by pain and infertility, where the lesions disseminate everywhere in the body with a preference for the pelvis. In that, it could be regarded as a benign metastatic disease, because its issue is not fatal. However, the molecular bases of this intriguing clinical condition are not well known. The objective of this study is to characterize the transcriptome differences between eutopic vs. ectopic endometrium with a special interest in pathways involved in cancerogenesis. We performed two hybridizations in technical replicate on highly specific long oligonucleotides microarrays (NimbleGen), with cDNA prepared from six-patients pools, where the same patient provided both eutopic and ectopic endometrium (endometriomas). To confirm the expression microarrays data, quantitative RT-PCR validation was performed on 12 individuals for 20 genes. Over 8000 transcripts were significantly modified (more than twice) in the lesions corresponding to 5600 down- or up-regulated genes. These were clustered through DAVID Bioinformatics Resources into 55 functional groups. The data are presented in a detailed and visual way on 24 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways implemented with induction ratios for each differentially expressed gene. An outstanding control of the cell cycle and a very specific modulation of the HOX genes were observed and provide some new evidence on why endometriosis only very rarely degenerates into cancer. The study constitutes a noteworthy update of gene profiling in endometriosis, by delivering the most complete and reliable list of dysregulated genes to date.


The New England Journal of Medicine | 2014

Mutant cohesin in premature ovarian failure

Sandrine Caburet; Valerie A. Arboleda; Elena Llano; Paul A. Overbeek; José Luis Barbero; Kazuhiro Oka; Wilbur R. Harrison; Daniel Vaiman; Ziva Ben-Neriah; Ignacio García-Tuñón; Marc Fellous; Alberto M. Pendás; Reiner A. Veitia; Eric Vilain

Premature ovarian failure is a major cause of female infertility. The genetic causes of this disorder remain unknown in most patients. Using whole-exome sequence analysis of a large consanguineous family with inherited premature ovarian failure, we identified a homozygous 1-bp deletion inducing a frameshift mutation in STAG3 on chromosome 7. STAG3 encodes a meiosis-specific subunit of the cohesin ring, which ensures correct sister chromatid cohesion. Female mice devoid of Stag3 are sterile, and their fetal oocytes are arrested at early prophase I, leading to oocyte depletion at 1 week of age.


Environmental Health Perspectives | 2009

Chronic Dietary Exposure to a Low-Dose Mixture of Genistein and Vinclozolin Modifies the Reproductive Axis, Testis Transcriptome, and Fertility

Florence Eustache; Françoise Mondon; Marie-Chantal Canivenc-Lavier; Corinne Lesaffre; Yvonne Fulla; Raymond Berges; Jean Pierre Cravedi; Daniel Vaiman; Jacques Auger

Background The reproductive consequences and mechanisms of action of chronic exposure to low-dose endocrine disruptors are poorly understood. Objective We assessed the effects of a continuous, low-dose exposure to a phytoestrogen (genistein) and/or an antiandrogenic food contaminant (vinclozolin) on the male reproductive tract and fertility. Methods Male rats were exposed by gavage to genistein and vinclozolin from conception to adulthood, alone or in combination, at low doses (1 mg/kg/day) or higher doses (10 and 30 mg/kg/day). We studied a number of standard reproductive toxicology end points and also assessed testicular mRNA expression profiles using long-oligonucleotide microarrays. Results The low-dose mixture and high-dose vinclozolin produced the most significant alterations in adults: decreased sperm counts, reduced sperm motion parameters, decreased litter sizes, and increased post implantation loss. Testicular mRNA expression profiles for these exposure conditions were strongly correlated. Functional clustering indicated that many of the genes induced belong to the “neuroactive ligand-receptor interactions” family encompassing several hormonally related actors (e.g., follicle-stimulating hormone and its receptor). All exposure conditions decreased the levels of mRNAs involved in ribosome function, indicating probable decreased protein production. Conclusions Our study shows that chronic exposure to a mixture of a dose of a phytoestrogen equivalent to that in the human diet and a low dose—albeit not environmental—of a common anti-androgenic food contaminant may seriously affect the male reproductive tract and fertility.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics

Frank Batista; Daniel Vaiman; Jean Dausset; Marc Fellous; Reiner A. Veitia

FOXL2 is a gene encoding a forkhead transcription factor, whose mutations are responsible for the blepharophimosis-ptosis-epicanthus inversus syndrome that often involves premature ovarian failure. FOXL2 is one of the earliest ovarian markers and it offers, along with its targets, an excellent model to study ovarian development and function in normal and pathological conditions. We have recently shown that the aromatase gene is a target of FOXL2, and only three other targets have been reported so far. To detect potential transcriptional targets of FOXL2, we used DNA chips and quantitative PCR to compare the transcriptomes of granulosa-like cells overexpressing, or not, FOXL2. This analysis showed that mediators of inflammation, apoptotic and transcriptional regulators, genes involved in cholesterol metabolism, and genes encoding enzymes and transcription factors involved in reactive oxygen species detoxification were up-regulated. On the other hand, FOXL2 down-regulated the transcription of several genes involved in proteolysis and signal transduction and in transcription regulation. A bioinformatic analysis was conducted to discriminate between potential target promoters activated and repressed by FOXL2. In addition, the promoters of strongly activated genes were enriched in forkhead recognition sites, suggesting that these genes might be direct FOXL2 targets. Altogether, these results provide insight into the activity of FOXL2 and may help in understanding the mechanisms of pathogenesis of FOXL2 mutations if the targets prove to be the same in the ovary.


PLOS Genetics | 2012

A Genetic Basis for a Postmeiotic X Versus Y Chromosome Intragenomic Conflict in the Mouse

Julie Cocquet; Peter J.I. Ellis; Shantha K. Mahadevaiah; Nabeel A. Affara; Daniel Vaiman; Paul S. Burgoyne

Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.


PLOS ONE | 2010

In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model.

Patricia Fauque; Françoise Mondon; Franck Letourneur; Marie-Anne Ripoche; Laurent Journot; Sandrine Barbaux; Luisa Dandolo; Catherine Patrat; Jean-Philippe Wolf; P. Jouannet; Hélène Jammes; Daniel Vaiman

Background Assisted Reproductive Technologies (ART) are increasingly used in humans; however, their impact is now questioned. At blastocyst stage, the trophectoderm is directly in contact with an artificial medium environment, which can impact placental development. This study was designed to carry out an in-depth analysis of the placental transcriptome after ART in mice. Methodology/Principal Findings Blastocysts were transferred either (1) after in vivo fertilization and development (control group) or (2) after in vitro fertilization and embryo culture. Placentas were then analyzed at E10.5. Six percent of transcripts were altered at the two-fold threshold in placentas of manipulated embryos, 2/3 of transcripts being down-regulated. Strikingly, the X-chromosome harbors 11% of altered genes, 2/3 being induced. Imprinted genes were modified similarly to the X. Promoter composition analysis indicates that FOXA transcription factors may be involved in the transcriptional deregulations. Conclusions For the first time, our study shows that in vitro fertilization associated with embryo culture strongly modify the placental expression profile, long after embryo manipulations, meaning that the stress of artificial environment is memorized after implantation. Expression of X and imprinted genes is also greatly modulated probably to adapt to adverse conditions. Our results highlight the importance of studying human placentas from ART.


Human Molecular Genetics | 2010

Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos

Patricia Fauque; Marie-Anne Ripoche; Jörg Tost; Laurent Journot; Anne Gabory; Florence Busato; Anne Le Digarcher; Françoise Mondon; Ivo Gut; Pierre Jouannet; Daniel Vaiman; Luisa Dandolo; Hélène Jammes

Genomic imprinting regulates the expression of a group of genes monoallelically expressed in a parent-of-origin specific manner. Allele-specific DNA methylation occurs at differentially methylated regions (DMRs) of these genes. We have previously shown that in vitro fertilization and embryo culture result in methylation defects at the imprinted H19-Igf2 locus at the blastocyst stage. The current study was designed to evaluate the consequences of these manipulations on genomic imprinting after implantation in the mouse. Blastocysts were produced following three experimental conditions: (i) embryos maintained in culture medium after in vivo fertilization or (ii) in vitro fertilization and (iii) a control group with embryos obtained after in vivo fertilization and timed mating. Blastocysts were all transplanted into pseudopregnant females. Embryos and placentas were collected on day 10.5 of development. DNA methylation patterns of the H19, Igf2, Igf2r and Dlk1-Dio3 DMRs were analyzed by quantitative pyrosequencing. In contrast to blastocyst stage, methylation profiles were normal both in embryonic and placental tissues after in vitro fertilization and culture. Expression of a selected set of imprinting genes from the recently described imprinted gene network (IGN) (including Igf2 and H19) was analyzed in placental tissues by quantitative RT-PCR. Placentas obtained after in vitro fertilization and embryo culture displayed significantly disturbed levels of H19 and Igf2 mRNA, as well as of most other genes from the IGN. As embryos were phenotypically normal, we hypothesize that the modulation of a coordinated network of imprinted genes results in a compensatory process capable of correcting potential dysfunction of placenta.

Collaboration


Dive into the Daniel Vaiman's collaboration.

Top Co-Authors

Avatar

Charles Chapron

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bruno Borghese

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Françoise Mondon

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Céline Méhats

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Hélène Jammes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Buffat

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Vilotte

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Fellous

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Méhats

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge