Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel W. Foster is active.

Publication


Featured researches published by Daniel W. Foster.


Journal of Clinical Investigation | 1977

A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis.

J D McGarry; G P Mannaerts; Daniel W. Foster

Studied on the oxidation of oleic and octanoic acids to ketone bodies were carried out in homogenates and in mitochondrial fractions of livers taken from fed and fasted rats. Malonyl-CoA inhibited ketogenesis from the former but not from the latter substrate. The site of inhibition appeared to be the carnitine acyltransferase I reaction. The effect was specific and easily reversible. Inhibitory concentrations were in the range of values obtained in livers from fed rats by others. It is proposed that malonyl-CoA functions as both precursor for fatty acid synthesis and suppressor of fatty acid oxidation. As such, it might be an important element in the carbohydrate-induced sparing of fatty acid oxidation.


Diabetes | 1994

More Direct Evidence for a Malonyl-CoA–Carnitine Palmitoyltransferase I Interaction as a Key Event in Pancreatic β-Cell Signaling

Songyuan Chen; Atsushi Ogawa; Makoto Ohneda; Roger H. Unger; Daniel W. Foster; J D McGarry

We sought to explore the emerging concept that malonyl-CoA generation, with concomitant suppression of mitochondrial carnitine palmitoyltransferase I (CPT I), represents an important component of glucose-stimulated insulin secretion (GSIS) by the pancreatic β-cell (Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE: Malonyl-CoA and long-chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267:5802–5810, 1992). Accordingly, pancreases from fed rats were perfused with basal (3 mM) followed by high (20 mM) glucose in the absence or presence of 2 mM hydroxycitrate (HC), an inhibitor of ATP-citrate (CIT) lyase (the penultimate step in the glucose → malonyl-CoA conversion). HC profoundly inhibited GSIS, whereas CIT had no effect. Inclusion of 0.5 mM palmitate in the perfusate significantly enhanced GSIS and completely offset the negative effect of HC. In isolated islets, HC stimulated [1-14C]palmitate oxidation in the presence of basal glucose and markedly obtunded the inhibitory effect of high glucose. Directional changes in 14C incorporation into phospholipids were opposite to those of 14CO2 production. At a concentration of 0.2 mM, 2-bromostearate, 2-bromopalmitate and etomoxir (all CPT I inhibitors) potentiated GSIS by the pancreas and inhibited palmitate oxidation in islets. However, at 0.05 mM, etomoxir did not influence insulin secretion but still caused significant suppression of fatty acid oxidation. The results provide more direct evidence for a pivotal role of malonyl-CoA suppression of CPT I, with attendant elevation of the cytosolic long-chain acyl-CoA concentration, in GSIS from the normal pancreatic β-cell. They also raise the possibility that the tested CPT I inhibitors act, in part, by generating non-metabolizable acyl-CoA species that mimic the effects of natural acyl-CoAs in triggering insulin release.


Annals of the New York Academy of Sciences | 2004

The role of the carnitine system in human metabolism

Daniel W. Foster

Abstract: Metabolism cycles daily between the fed and fasted states. The pathways of energy production are reversible and distinct. In the anabolic (fed) state, the liver stores glucose as glycogen, and fatty acid/triglyceride synthesis is active. In the catabolic (fasted) state, the liver becomes a glucose producer, lipogenesis is slowed, and fatty acid oxidation/ketogenesis is activated. The rate‐limiting step for the latter is vested in the carnitine/carnitine palmitoyltransferase (CPT) system, and the off/on regulator of this is malonyl CoA. The AMP‐induced protein kinase primarily determines the concentration of malonyl CoA. Four other systems have significant influence: two on fatty acid oxidation and two on lipogenesis. Peroxisome proliferator‐activated receptor γ‐1α, a master regulator of metabolism, induces hepatic gluconeogenesis and fatty acid oxidation in the catabolic phase. Deficiency of stearoyl CoA desaturase, although having no role in gluconeogenesis, powerfully induces fatty acid oxidation and weight loss despite increased food intake in rodents. Major stimulators of lipogenesis are carbohydrate‐responsive element binding protein and the Insig system. The malonyl CoA‐regulated CPT system has been firmly established in humans. The other systems have not yet been confirmed in humans, but likely are active there as well. Activation of fatty acid oxidation has considerable clinical promise for the treatment of obesity, type 2 diabetes, steatohepatitis, and lipotoxic damage to the heart.


Metabolism-clinical and Experimental | 1972

Regulation of ketogenesis and clinical aspects of the ketotic state

J. Denis McGarry; Daniel W. Foster

Abstract Recent studies of the regulation of ketogenesis are reviewed. Under circumstances of relative or absolute insulin deficiency there is a mobilization of free fatty acids from adipose tissue to the liver. While an increased delivery of fatty acids to this organ is important in providing substrate for ketone body formation, it is emphasized that enhanced uptake of fatty acids by the liver is not sufficient in itself to initiate maximal ketogenesis. It appears likely that a major determinant of the rate of ketogenesis is competition for the fatty acid substrate between the β-oxidative and triglyceride synthesizing pathways. While it is widely held that the rate of triglyceride synthesis is primary and that only those fatty acids not utilized for esterification become available for oxidation, evidence for the reverse sequence is presented. It is considered likely that fatty acids are utilized for triglyceride synthesis only insofar as they escape uptake and oxidation in the mitochondria. Regardless of the mechanism, fatty acid oxidation is increased in the ketotic state with the consequence that acetyl-CoA production is accelerated. Since the utilization of acetyl-CoA for fatty acid synthesis and, to a much lesser extent, its oxidation in the Krebs cycle is impaired, the synthesis of acetoacetate and β-hydroxybutyrate is stimulated to a remarkable degree. The hepatic overproduction of ketones appears to be coupled to a limited capacity for their utilization by peripheral tissues, the combined effect of which accounts for the life-threatening acidosis seen in diabetic coma. From a clinical standpoint, newer studies relating to the treatment of diabetic ketoacidosis have been covered, with particular attention paid to the problems of late cerebral edema, paradoxical acidification of the cerebrospinal fluid during treatment, shifts of the oxygen dissociation curve due to 2,3-diphosphoglycerate depletion and initial hypokalemia. Recommendations for therapy designed to minmize complications are presented.


Diabetes | 1984

From Glycogen to Ketones—And Back

Daniel W. Foster

Bauting lecture 1984. Regulation de la cetogenese, role du taux hepatique de carnitine et du glucagon. Regulation des interactions entre synthese du glycogene et glycolyse: role du fructose 2-6 biphosphate


Journal of Clinical Investigation | 2012

Malonyl-CoA: the regulator of fatty acid synthesis and oxidation

Daniel W. Foster

In the catabolic state with no food intake, the liver generates ketones by breaking down fatty acids. During the nocturnal fast or longer starvation periods, this protects the brain, which cannot oxidize fatty acids. In 1977, we published a study in the JCI noting the surprising realization that malonyl-CoA, the substrate of fatty acid synthesis, was also an inhibitor of fatty acid oxidation. Subsequent experiments have borne out this finding and furthered our understanding of molecular metabolism.


Journal of Clinical Investigation | 1989

Exercise intolerance, lactic acidosis, and abnormal cardiopulmonary regulation in exercise associated with adult skeletal muscle cytochrome c oxidase deficiency.

Ronald G. Haller; Steven F. Lewis; R W Estabrook; S DiMauro; S Servidei; Daniel W. Foster

A 27-yr-old woman with lifelong severe exercise intolerance manifested by muscle fatigue, lactic acidosis, and prominent symptoms of dyspnea and tachycardia induced by trivial exercise was found to have a skeletal muscle respiratory chain defect characterized by low levels of reducible cytochromes a + a3 and b in muscle mitochondria and marked deficiency of cytochrome c oxidase (complex IV) as assessed biochemically and immunologically. Investigation of the pathophysiology of the exercise response in the patient revealed low maximal oxygen uptake (1/3 that of normal sedentary women) in cycle exercise and impaired muscle oxygen extraction as indicated by profoundly low maximal systemic arteriovenous oxygen difference (5.8 ml/dl; controls = 15.4 +/- 1.4, mean +/- SD). The increases in cardiac output and ventilation during exercise, normally closely coupled to muscle metabolic rate, were markedly exaggerated (more than two- to threefold normal) relative to oxygen uptake and carbon dioxide production accounting for prominent tachycardia and dyspnea at low workloads. Symptoms in our patient are similar to those reported in other human skeletal muscle respiratory chain defects involving complexes I and III, and the exaggerated circulatory response resembles that seen during experimental inhibition of the mitochondrial respiratory chain. These results suggest that impaired oxidative phosphorylation in working muscle disrupts the normal regulation of cardiac output and ventilation relative to muscle metabolic rate in exercise.


Diabetes | 1984

Evidence for suppression of hepatic glucose-6-phosphatase with carbohydrate feeding

Christopher B. Newgard; Daniel W. Foster; J D McGarry

The mechanism by which exogenous glucose stimulates the incorporation of hepatic glucose-6-phosphate into glycogen in fasted rats has not been clearly delineated. We gave glucose intragastrically over a 3.5-h period during which liver glycogen was deposited at linear rates. Simultaneous primed continuous infusion of [2-3H] or [3-3H]glucose established that under these conditions absolute carbon flow through hepatic glucose-6-phosphatase was greatly suppressed. After 1 h, hepatic [UDP-glucose] and [glucose-6-phosphate] had fallen by 50–60% and the former remained low throughout the experiment. By contrast, [glucose-6-phosphate] rebounded to its initial value by 2 h and remained at this level during the subsequent hour. We interpret the data as follows. Exogenous glucose, in addition to acting as a precursor of liver glucose-6-phosphate, causes diversion of the latter away from free glucose formation and into glycogen synthesis. The fall in [UDP-glucose] is in accord with a glucose-induced activation of glycogen synthase, as proposed by Hers (Annu. Rev. Biochem. 1976; 45:167–89.). However, the fall-rise sequence of glucose-6-phosphate concentration constitutes the first direct evidence in vivo for simultaneous inhibition at the level of glucose-6-phosphatase.


Journal of Clinical Investigation | 1967

Studies in the Ketosis of Fasting

Daniel W. Foster

A series of experiments was performed during the induction of starvation ketosis and in the acute reversal of the ketotic state. In contrast to the predictions of two widely held theories of ketogenesis, control of acetoacetate production by the liver appeared to be unrelated to changes in fatty acid mobilization from the periphery, fatty acid oxidation, fatty acid synthesis, or the acetyl coenzyme A concentration in the liver.Ketosis of fasting was shown to be reversible within 5 minutes by the injection of glucose or insulin. This effect was due to a prompt cessation of acetoacetate production by the liver. The possibility is raised that the ketosis of fasting is due to a direct activation of acetoacetate-synthesizing enzymes secondary to a starvation-induced depression of insulin secretion by the pancreas.


Biochimica et Biophysica Acta | 1978

Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment

Guy P. Mannaerts; Josse R. Thomas; Luc J. Debeer; J. Denis McGarry; Daniel W. Foster

The effect of clofibrate treatment on hepatic ketogenic capacity was studied in rats. Ketogenesis from octanoate and oleate was increased 2- and 4,5-fold, respectively, in hepatocytes from fed, treated rats. In contrast to controls ketogenic rates did not increase upon starvation. While ketogenesis from oleate was higher in fed, treated animals than in fasted controls, endogenous ketogenesis was lower and increased upon starvation. Ketogenesis from octanoate and oleate was stimulated approx. 2-fold in homogenates from treated animals. Labeled pyruvate and succinate oxidation was unaltered. [1-14C]Oleate oxidation was severely inhibited by cyanide, both in homogenates from controls and treated animals. Clofibrate caused a 3-fold increase in hepatic carnitine levels. Catalase and glutamate dehydrogenase activities were also increased by the drug. Cytochrome c oxidase did not change. Despite their increased ketogenic capacity hepatocytes from treated rats esterified as much oleate as controls. The increased oxidation was matched by an increased oleate uptake. Plasma ketones were increased 2-fold in fasted, treated animals. Plasma free fatty acids were unaffected. It is concluded that the enhanced ketogenic capacity induced by clofibrate is the result of an increase in mitochondrial beta-oxidation, an increase in the activity of carnitine palmitoyltransferase and possibly of the observed increases in hepatic carnitine content and fatty acid uptake.

Collaboration


Dive into the Daniel W. Foster's collaboration.

Top Co-Authors

Avatar

J D McGarry

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

J. Denis McGarry

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Victoria Esser

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nicholas F. Brown

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

M Kuwajima

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

B C Weis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith F. Woeltje

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S E Mills

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ben Bloom

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge