Daniel W. Lee
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel W. Lee.
The Lancet | 2015
Daniel W. Lee; James N. Kochenderfer; Maryalice Stetler-Stevenson; Yongzhi K Cui; Cindy Delbrook; Steven A. Feldman; Terry J. Fry; Rimas J. Orentas; Marianna Sabatino; Nirali N. Shah; Seth M. Steinberg; Dave Stroncek; Nick Tschernia; Constance Yuan; Hua Zhang; Ling Zhang; Steven A. Rosenberg; Alan S. Wayne; Crystal L. Mackall
BACKGROUND Chimeric antigen receptor (CAR) modified T cells targeting CD19 have shown activity in case series of patients with acute and chronic lymphocytic leukaemia and B-cell lymphomas, but feasibility, toxicity, and response rates of consecutively enrolled patients treated with a consistent regimen and assessed on an intention-to-treat basis have not been reported. We aimed to define feasibility, toxicity, maximum tolerated dose, response rate, and biological correlates of response in children and young adults with refractory B-cell malignancies treated with CD19-CAR T cells. METHODS This phase 1, dose-escalation trial consecutively enrolled children and young adults (aged 1-30 years) with relapsed or refractory acute lymphoblastic leukaemia or non-Hodgkin lymphoma. Autologous T cells were engineered via an 11-day manufacturing process to express a CD19-CAR incorporating an anti-CD19 single-chain variable fragment plus TCR zeta and CD28 signalling domains. All patients received fludarabine and cyclophosphamide before a single infusion of CD19-CAR T cells. Using a standard 3 + 3 design to establish the maximum tolerated dose, patients received either 1 × 10(6) CAR-transduced T cells per kg (dose 1), 3 × 10(6) CAR-transduced T cells per kg (dose 2), or the entire CAR T-cell product if sufficient numbers of cells to meet the assigned dose were not generated. After the dose-escalation phase, an expansion cohort was treated at the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT01593696. FINDINGS Between July 2, 2012, and June 20, 2014, 21 patients (including eight who had previously undergone allogeneic haematopoietic stem-cell transplantation) were enrolled and infused with CD19-CAR T cells. 19 received the prescribed dose of CD19-CAR T cells, whereas the assigned dose concentration could not be generated for two patients (90% feasible). All patients enrolled were assessed for response. The maximum tolerated dose was defined as 1 × 10(6) CD19-CAR T cells per kg. All toxicities were fully reversible, with the most severe being grade 4 cytokine release syndrome that occurred in three (14%) of 21 patients (95% CI 3·0-36·3). The most common non-haematological grade 3 adverse events were fever (nine [43%] of 21 patients), hypokalaemia (nine [43%] of 21 patients), fever and neutropenia (eight [38%] of 21 patients), and cytokine release syndrome (three [14%) of 21 patients). INTERPRETATION CD19-CAR T cell therapy is feasible, safe, and mediates potent anti-leukaemic activity in children and young adults with chemotherapy-resistant B-precursor acute lymphoblastic leukaemia. All toxicities were reversible and prolonged B-cell aplasia did not occur. FUNDING National Institutes of Health Intramural funds and St Baldricks Foundation.
Blood | 2014
Daniel W. Lee; Rebecca A. Gardner; David L. Porter; Chrystal U. Louis; Nabil Ahmed; Michael C. Jensen; Stephan A. Grupp; Crystal L. Mackall
As immune-based therapies for cancer become potent, more effective, and more widely available, optimal management of their unique toxicities becomes increasingly important. Cytokine release syndrome (CRS) is a potentially life-threatening toxicity that has been observed following administration of natural and bispecific antibodies and, more recently, following adoptive T-cell therapies for cancer. CRS is associated with elevated circulating levels of several cytokines including interleukin (IL)-6 and interferon γ, and uncontrolled studies demonstrate that immunosuppression using tocilizumab, an anti-IL-6 receptor antibody, with or without corticosteroids, can reverse the syndrome. However, because early and aggressive immunosuppression could limit the efficacy of the immunotherapy, current approaches seek to limit administration of immunosuppressive therapy to patients at risk for life-threatening consequences of the syndrome. This report presents a novel system to grade the severity of CRS in individual patients and a treatment algorithm for management of CRS based on severity. The goal of our approach is to maximize the chance for therapeutic benefit from the immunotherapy while minimizing the risk for life threatening complications of CRS.
Blood | 2013
Waleed Haso; Daniel W. Lee; Nirali N. Shah; Maryalice Stetler-Stevenson; Constance Yuan; Ira Pastan; Dimiter S. Dimitrov; Richard A. Morgan; David J. FitzGerald; David M. Barrett; Alan S. Wayne; Crystal L. Mackall; Rimas J. Orentas
Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3 constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL.
Clinical Cancer Research | 2012
Daniel W. Lee; David M. Barrett; Crystal L. Mackall; Rimas J. Orentas; Stephan A. Grupp
Improved outcomes for children with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, gene therapy, and cell-processing technologies have paved the way for clinical applications of chimeric antigen receptor–based therapies. This is a new form of targeted immunotherapy that merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity, potential for expansion, and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B-cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. In pediatric oncology, CD19 and GD2 are compelling antigens that have already been identified for targeting pre-B acute lymphoblastic leukemia and neuroblastoma, respectively, with this approach, but it is likely that other antigens expressed in a variety of childhood cancers will also soon be targeted using this therapy. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of childhood cancer. Clin Cancer Res; 18(10); 2780–90. ©2012 AACR.
Nature Communications | 2016
Elad Jacoby; Sang M. Nguyen; Thomas J. Fountaine; Kathryn Welp; Berkley Gryder; Haiying Qin; Yinmeng Yang; Christopher D. Chien; Alix E. Seif; Haiyan Lei; Young K. Song; Javed Khan; Daniel W. Lee; Crystal L. Mackall; Rebecca A. Gardner; Michael C. Jensen; Jack F. Shern; Terry J. Fry
Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL.
Nature Medicine | 2017
Terry J. Fry; Nirali N. Shah; Rimas J. Orentas; Maryalice Stetler-Stevenson; Constance Yuan; Sneha Ramakrishna; Pamela L. Wolters; Staci Martin; Cindy Delbrook; Bonnie Yates; Haneen Shalabi; Thomas J. Fountaine; Jack F. Shern; Robbie G. Majzner; David F. Stroncek; Marianna Sabatino; Yang Feng; Dimiter S. Dimitrov; Ling Zhang; Sang Nguyen; Haiying Qin; Boro Dropulic; Daniel W. Lee; Crystal L. Mackall
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent effects in relapsed and/or refractory pre–B cell acute lymphoblastic leukemia (B-ALL), but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed in most cases of B-ALL and is usually retained following CD19 loss. We report results from a phase 1 trial testing a new CD22-targeted CAR (CD22-CAR) in 21 children and adults, including 17 who were previously treated with CD19-directed immunotherapy. Dose-dependent antileukemic activity was observed, with complete remission obtained in 73% (11/15) of patients receiving ≥1 × 106 CD22-CAR T cells per kg body weight, including 5 of 5 patients with CD19dim or CD19− B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted CD22+ cell escape from killing by CD22-CAR T cells. These results are the first to establish the clinical activity of a CD22-CAR in B-ALL, including leukemia resistant to anti-CD19 immunotherapy, demonstrating potency against B-ALL comparable to that of CD19-CAR at biologically active doses. Our results also highlight the critical role played by antigen density in regulating CAR function.Chimeric antigen receptor (CAR) T-cells targeting CD19 mediate potent effects in relapsed/refractory pre-B cell acute lymphoblastic leukemia (B-ALL) but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed on most B-ALL and usually retained following CD19 loss. We report results from a phase I trial testing a novel CD22-CAR in twenty-one children and adults, including 17 previously treated with CD19-directed immunotherapy. Dose dependent anti-leukemic activity was observed with complete remission in 73% (11/15) of patients receiving ≥ 1 × 106 CD22-CART cells/kg, including 5/5 patients with CD19dim/neg B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted escape from killing by CD22-CART cells. These results are the first to eastablish the clinical activity of a CD22-CAR in pre-B cell ALL, including in leukemia resistant to anti-CD19 immunotherapy, demonstrating comparable potency to CD19-CART at biologically active doses in B-ALL. They also highlight the critical role played by antigen density in regulating CAR function. (Funded by NCI Intramural Research Program)
Frontiers in Oncology | 2012
Rimas J. Orentas; Daniel W. Lee; Crystal L. Mackall
Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.
Cytotherapy | 2013
Barbara Tumaini; Daniel W. Lee; Tasha Lin; Luciano Castiello; David F. Stroncek; Crystal L. Mackall; Alan S. Wayne; Marianna Sabatino
BACKGROUND AIMS Adoptive immunotherapy with the use of chimeric antigen receptor (CAR)-engineered T cells specific for CD19 has shown promising results for the treatment of B-cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. We describe a new, simplified method to produce anti-CD19-CAR T cells. METHODS T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 h, and a second transduction was then performed. No spinoculation was used. Cells were then expanded for an additional 9 days. RESULTS The method was validated through the use of two PBMC products from a patient with B-cell chronic lymphoblastic leukemia and one PBMC product from a healthy subject. The two PBMC products from the patient with B-cell chronic lymphoblastic leukemia contained 11.4% and 12.9% T cells. The manufacturing process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6-fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first four patients with acute lymphoblastic leukemia treated at our institution. CONCLUSIONS We developed a simplified, semi-closed system for the initial selection, activation, transduction and expansion of T cells with the use of anti-CD3/anti-CD28 beads and bags to produce autologous anti-CD19 CAR-transduced T cells to support an ongoing clinical trial.
Cytotherapy | 2016
David F. Stroncek; Jiaqiang Ren; Daniel W. Lee; Minh Tran; Sue Ellen Frodigh; Marianna Sabatino; Hanh Khuu; Melinda S. Merchant; Crystal L. Mackall
BACKGROUND AIMS Autologous chimeric antigen receptor (CAR) T-cell therapies have shown promising clinical outcomes, but T-cell yields have been variable. CD19- and GD2-CAR T-cell manufacturing records were reviewed to identify sources of variability. METHODS CD19-CAR T cells were used to treat 43 patients with acute lymphocytic leukemia or lymphoma and GD2-CAR T cells to treat eight patients with osteosarcoma and three with neuroblastoma. Both types of CAR T cells were manufactured using autologous peripheral blood mononuclear cells (PBMC) concentrates and anti-CD3/CD28 beads for T-cell enrichment and simulation. RESULTS A comparison of the first 6 GD2- and the first 22 CD19-CAR T-cell products manufactured revealed that GD2-CAR T-cell products contained fewer transduced cells than CD19-CAR T-cell products (147 ± 102 × 10(6) vs 1502 ± 1066 × 10(6); P = 0.0059), and their PBMC concentrates contained more monocytes (31.4 ± 12.4% vs 18.5 ± 13.7%; P = 0.019). Among the first 28 CD19-CAR T-cell products manufactured, four had poor expansion yielding less than 1 × 10(6) transduced T cells per kilogram. When PBMC concentrates from these four patients were compared with the 24 others, PBMC concentrates of poorly expanding products contained greater quantities of monocytes (39.8 ± 12.9% vs. 15.3 ± 10.8%, P = 0.0014). Among the patients whose CD19-CAR T cells expanded poorly, manufacturing for two patients was repeated using cryopreserved PBMC concentrates but incorporating a monocyte depleting plastic adherence step, and an adequate dose of CAR T cells was produced for both patients. CONCLUSIONS Variability in CAR T-cell expansion is due, at least in part, to the contamination of the starting PBMC concentrates with monocytes.
Transfusion | 2017
Elizabeth S. Allen; David F. Stroncek; Jiaqiang Ren; Anne F. Eder; Kamille A. West; Terry J. Fry; Daniel W. Lee; Crystal L. Mackall; Cathy Conry-Cantilena
The first step in manufacturing chimeric antigen receptor (CAR) T cells is to collect autologous CD3+ lymphocytes by apheresis. Patients, however, often have leukopenia or have other disease‐related complications. We evaluated the feasibility of collecting adequate numbers of CD3+ cells, risk factors for inadequate collections, and the rate of adverse events.