Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Wangpraseurt is active.

Publication


Featured researches published by Daniel Wangpraseurt.


Frontiers in Microbiology | 2012

Light gradients and optical microniches in coral tissues.

Daniel Wangpraseurt; Anthony W. D. Larkum; Peter J. Ralph; Michael Kühl

Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.


PLOS ONE | 2012

In Situ Oxygen Dynamics in Coral-Algal Interactions

Daniel Wangpraseurt; Miriam Weber; Hans Røy; Lubos Polerecky; Dirk de Beer; Suharsono; Maggy M. Nugues

Background Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 µM during the day. At night, the interface was hypoxic (∼70 µM) in coral-turf interactions and close to anoxic (∼2 µM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental conditions in studies on coral stress.


The Journal of Experimental Biology | 2014

Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals

Daniel Wangpraseurt; Anthony W. D. Larkum; James Bruce Franklin; Milán Szabó; Peter J. Ralph; Michael Kühl

Coral tissue optics has received very little attention in the past, although the interaction between tissue and light is central to our basic understanding of coral physiology. Here we used fibre-optic and electrochemical microsensors along with variable chlorophyll fluorescence imaging to directly measure lateral light propagation within living coral tissues. Our results show that corals can transfer light laterally within their tissues to a distance of ~2 cm. Such light transport stimulates O2 evolution and photosystem II operating efficiency in areas >0.5–1 cm away from direct illumination. Light is scattered strongly in both coral tissue and skeleton, leading to photon trapping and lateral redistribution within the tissue. Lateral light transfer in coral tissue is a new mechanism by which light is redistributed over the coral colony and we argue that tissue optical properties are one of the key factors in explaining the high photosynthetic efficiency of corals.


Journal of the Royal Society Interface | 2014

Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals.

Kasper Elgetti Brodersen; Mads Lichtenberg; Peter J. Ralph; Michael Kühl; Daniel Wangpraseurt

The light field on coral reefs varies in intensity and spectral composition, and is the key regulating factor for phototrophic reef organisms, for example scleractinian corals harbouring microalgal symbionts. However, the actual efficiency of light utilization in corals and the mechanisms affecting the radiative energy budget of corals are underexplored. We present the first balanced light energy budget for a symbiont-bearing coral based on a fine-scale study of the microenvironmental photobiology of the massive coral Montastrea curta. The majority (more than 96%) of the absorbed light energy was dissipated as heat, whereas the proportion of the absorbed light energy used in photosynthesis was approximately 4.0% under an irradiance of 640 µmol photons m−2 s−1. With increasing irradiance, the proportion of heat dissipation increased at the expense of photosynthesis. Despite such low energy efficiency, we found a high photosynthetic efficiency of the microalgal symbionts showing high gross photosynthesis rates and quantum efficiencies (QEs) of approximately 0.1 O2 photon−1 approaching theoretical limits under moderate irradiance levels. Corals thus appear as highly efficient light collectors with optical properties enabling light distribution over the corallite/tissue microstructural canopy that enables a high photosynthetic QE of their photosynthetic microalgae in hospite.


The ISME Journal | 2016

Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals

Daniel Wangpraseurt; Mathieu Pernice; Paul Guagliardo; Matt R. Kilburn; Peta L. Clode; Lubos Polerecky; Michael Kühl

Recent coral optics studies have revealed the presence of steep light gradients and optical microniches in tissues of symbiont-bearing corals. Yet, it is unknown whether such resource stratification allows for physiological differences of Symbiodinium within coral tissues. Using a combination of stable isotope labelling and nanoscale secondary ion mass spectrometry, we investigated in hospite carbon fixation of individual Symbiodinium as a function of the local O2 and light microenvironment within the coral host determined with microsensors. We found that net carbon fixation rates of individual Symbiodinium cells differed on average about sixfold between upper and lower tissue layers of single coral polyps, whereas the light and O2 microenvironments differed ~15- and 2.5-fold, respectively, indicating differences in light utilisation efficiency along the light microgradient within the coral tissue. Our study suggests that the structure of coral tissues might be conceptually similar to photosynthetic biofilms, where steep physico-chemical gradients define form and function of the local microbial community.


Frontiers in Marine Science | 2016

Flow and Coral Morphology Control Coral Surface pH: Implications for the Effects of Ocean Acidification

Neil C. S. Chan; Daniel Wangpraseurt; Michael Kühl; Sean R. Connolly

The future impact of ocean acidification (OA) on corals is disputed in part because mathematical models used to predict these impacts do not seem to capture, or offer a framework to adequately explain, the substantial variability in acidification effects observed in empirical studies. The build-up of a diffusive boundary layer (DBL), wherein solute transport is controlled by diffusion, can lead to pronounced differences between the bulk seawater pH, and the actual pH experienced by the organism, a factor rarely considered in mathematical modelling of ocean acidification effects on corals. In the present study, we developed a simple diffusion-reaction-uptake model that was experimentally parameterized based on direct microsensor measurements of coral tissue pH and O2 within the DBL of a branching and a massive coral. The model accurately predicts tissue surface pH for different coral morphologies and under different flow velocities as a function of ambient pH. We show that, for all cases, tissue surface pH is elevated at lower flows, and thus thicker DBLs. The relative effects of OA on coral surface pH was controlled by flow and we show that under low flow velocities tissue surface pH under OA conditions (pHSWS = 7.8) can be equal to the pH under normal conditions (pHSWS = 8.2). We conclude that OA effects on corals in nature will be complex as the degree to which they are controlled by flow appears to be species specific.


PLOS ONE | 2014

Light Respiratory Processes and Gross Photosynthesis in Two Scleractinian Corals

Verena Schrameyer; Daniel Wangpraseurt; Ross Hill; Michael Kühl; Anthony W. D. Larkum; Peter J. Ralph

The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent metabolic processes. Overall, the coral P. decussata exhibited higher CO2 uptake rates than P. damicornis over the experimental irradiance range. P. decussata also harboured twice as many algal symbionts and higher total protein biomass compared to P. damicornis, possibly resulting in self-shading of the symbionts and/or changes in host tissue specific light distribution. Differences in light respiration and CO2 availability could be due to host-specific characteristics that modulate the symbiont microenvironment, its photosynthesis, and hence the overall performance of the coral holobiont.


Journal of the Royal Society Interface | 2017

In vivo imaging of coral tissue and skeleton with optical coherence tomography

Daniel Wangpraseurt; Camilla Wentzel; Steven L. Jacques; Michael Wagner; Michael Kühl

Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology.


PLOS ONE | 2014

Spectral Effects on Symbiodinium Photobiology Studied with a Programmable Light Engine

Daniel Wangpraseurt; Bojan Tamburic; Milán Szabó; David J. Suggett; Peter J. Ralph; Michael Kühl

The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.


Frontiers in Microbiology | 2017

In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?

Daniel Wangpraseurt; Jacob Holm; Anthony W. D. Larkum; Mathieu Pernice; Peter J. Ralph; David J. Suggett; Michael Kühl

Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.

Collaboration


Dive into the Daniel Wangpraseurt's collaboration.

Top Co-Authors

Avatar

Michael Kühl

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Niclas Lyndby

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Holm

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Michael Wagner

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge