Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Weinstock is active.

Publication


Featured researches published by Daniel Weinstock.


Obesity | 2011

The Central Cannabinoid CB1 Receptor Is Required for Diet‐Induced Obesity and Rimonabant's Antiobesity Effects in Mice

Zhen Pang; Nancy N. Wu; Weiguang Zhao; David Chain; Erica Schaffer; Xin Zhang; Preeti Yamdagni; Vaseem Palejwala; Chunpeng Fan; Sarah Favara; Holly Dressler; Kyriakos D. Economides; Daniel Weinstock; Jean Cavallo; Souad Naimi; Anne-Marie Galzin; Etienne Guillot; Marie-Pierre Pruniaux; Michael J. Tocci; H. Greg Polites

Cannabinoid receptor CB1 is expressed abundantly in the brain and presumably in the peripheral tissues responsible for energy metabolism. It is unclear if the antiobesity effects of rimonabant, a CB1 antagonist, are mediated through the central or the peripheral CB1 receptors. To address this question, we generated transgenic mice with central nervous system (CNS)–specific knockdown (KD) of CB1, by expressing an artificial microRNA (AMIR) under the control of the neuronal Thy1.2 promoter. In the mutant mice, CB1 expression was reduced in the brain and spinal cord, whereas no change was observed in the superior cervical ganglia (SCG), sympathetic trunk, enteric nervous system, and pancreatic ganglia. In contrast to the neuronal tissues, CB1 was undetectable in the brown adipose tissue (BAT) or the liver. Consistent with the selective loss of central CB1, agonist‐induced hypothermia was attenuated in the mutant mice, but the agonist‐induced delay of gastrointestinal transit (GIT), a primarily peripheral nervous system‐mediated effect, was not. Compared to wild‐type (WT) littermates, the mutant mice displayed reduced body weight (BW), adiposity, and feeding efficiency, and when fed a high‐fat diet (HFD), showed decreased plasma insulin, leptin, cholesterol, and triglyceride levels, and elevated adiponectin levels. Furthermore, the therapeutic effects of rimonabant on food intake (FI), BW, and serum parameters were markedly reduced and correlated with the degree of CB1 KD. Thus, KD of CB1 in the CNS recapitulates the metabolic phenotype of CB1 knockout (KO) mice and diminishes rimonabants efficacy, indicating that blockade of central CB1 is required for rimonabants antiobesity actions.


Frontiers in Neurology | 2013

Teriflunomide Attenuates Immunopathological Changes in the Dark Agouti Rat Model of Experimental Autoimmune Encephalomyelitis

Garth E. Ringheim; Lan Lee; Lynn Laws-Ricker; Thomas Delohery; Li Liu; Donghui Zhang; Nicholas J. Colletti; Timothy J. Soos; Kendra Schroeder; Barbara Fanelli; Nian Tian; Christopher Arendt; Deborah Iglesias-Bregna; Margaret Petty; Zhongqi Ji; George Qian; Rajula Gaur; Daniel Weinstock; Jean Cavallo; Juventas Telsinskas; Kathleen McMonagle-Strucko

Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing-remitting multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induced changes in immune cell populations in the blood and spleen suggesting an inhibitory effect on pathogenic immune responses.


Journal of Immunotoxicology | 2015

Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence?

Jason Aligo; Mindi Walker; Peter J. Bugelski; Daniel Weinstock

Abstract Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi’s Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.


International Immunopharmacology | 2014

Analysis of cytokine release assay data using machine learning approaches

Feiyu Xiong; Marco Janko; Mindi Walker; Dorie Makropoulos; Daniel Weinstock; Moshe Kam; Leonid Hrebien

The possible onset of Cytokine Release Syndrome (CRS) is an important consideration in the development of monoclonal antibody (mAb) therapeutics. In this study, several machine learning approaches are used to analyze CRS data. The analyzed data come from a human blood in vitro assay which was used to assess the potential of mAb-based therapeutics to produce cytokine release similar to that induced by Anti-CD28 superagonistic (Anti-CD28 SA) mAbs. The data contain 7 mAbs and two negative controls, a total of 423 samples coming from 44 donors. Three (3) machine learning approaches were applied in combination to observations obtained from that assay, namely (i) Hierarchical Cluster Analysis (HCA); (ii) Principal Component Analysis (PCA) followed by K-means clustering; and (iii) Decision Tree Classification (DTC). All three approaches were able to identify the treatment that caused the most severe cytokine response. HCA was able to provide information about the expected number of clusters in the data. PCA coupled with K-means clustering allowed classification of treatments sample by sample, and visualizing clusters of treatments. DTC models showed the relative importance of various cytokines such as IFN-γ, TNF-α and IL-10 to CRS. The use of these approaches in tandem provides better selection of parameters for one method based on outcomes from another, and an overall improved analysis of the data through complementary approaches. Moreover, the DTC analysis showed in addition that IL-17 may be correlated with CRS reactions, although this correlation has not yet been corroborated in the literature.


Journal of Immunotoxicology | 2016

Development of a squamous cell carcinoma mouse model for immunotoxicity testing

Devon D. Sominski; Patricia Rafferty; Kerry Brosnan; Amy Volk; Mindi Walker; Dorie Capaldi; Eva Emmell; Kjell Johnson; Daniel Weinstock

Abstract An important component of safety assessment of new pharmaceuticals is evaluation of their potential to increase the risk of developing cancer in humans. The traditional 2-year rodent bioassay often is not feasible or scientifically applicable for evaluation of biotherapeutics. Additionally, it has poor predictive value for non-genotoxic immunosuppressive compounds. Thus, there is a need for alternative testing strategies. A novel 3-stage tumor model in syngeneic C3H/HeN mice was evaluated here to study the effects of immunosuppressive drugs on tumor promotion and progression in vivo. The model employed a skin squamous cell carcinoma cell line (SCC VII) due to the increased prevalence of squamous cell carcinoma (SCC) in humans associated with immunosuppression after transplants. Local invasion, colonization and tumor progression were evaluated. The validation set of immunosuppressive drugs included: Cyclosporin (CSA), cyclophosphamide (CTX), azathioprine, etanercept, abatacept and prednisone. Local invasion was evaluated by histological assessment as well as fluorescence trafficking from Qdot®-labeled tumor cells from the site of inoculation to the draining lymph node. Colonization was evaluated by lung colony counts following intravenous inoculation. Tumor progression was assessed by morphometric analysis of lesion area, angiogenesis and growth fraction of established metastatic neoplasia. Immunosuppressive drugs in the validation set yielded mixed results, including decreased progression. The methods and results described herein using an in vivo syngeneic mouse tumor model can provide insight about the assessment of immunosuppressive drugs in carcinogenicity risk assessment.


Journal of Immunotoxicology | 2015

Murine gammaherpesvirus-68 (MHV-68) is not horizontally transmitted amongst laboratory mice by cage contact

Jason Aligo; Kerry Brosnan; Mindi Walker; Eva Emmell; S. Rochelle Mikkelsen; Gary R. Burleson; Florence G. Burleson; Amy Volk; Daniel Weinstock

Abstract Murine gammaherpesvirus-68 (MHV-68), a natural pathogen of mice, is being evaluated as a model of Epstein Barr Virus (EBV) infection for use in investigation of the effects of immunomodulatory therapy on herpesvirus pathogenesis in humans. Immunosuppressive agents are used for treatment of a variety of autoimmune diseases as well as for prevention of tissue rejection after organ transplantation and can result in recrudescence of latent herpesvirus infections. Prior to examination of MHV-68 as a suitable model for EBV, better characterization of the MHV-68 model was desirable. Characterization of the MHV-68 model involved development of assays for detecting virus and for demonstration of safety when present in murine colonies. Limited information is available in the literature regarding MHV-68 transmission, although recent reports indicate the virus is not horizontally spread in research facilities. To further determine transmission potential, immunocompetent and immunodeficient mice were infected with MHV-68 and co-habitated with naïve animals. Molecular pathology assays were developed to characterize the MHV-68 model and to determine viral transmission. Horizontal transmission of virus was not observed from infected animals to naïve cagemates after fluorescence microscopy assays and quantitative PCR (qPCR). Serologic analysis complemented these studies and was used as a method of monitoring infection amongst murine colonies. Overall, these findings demonstrate that MHV-68 infection can be controlled and monitored in murine research facilities, and the potential for unintentional infection is low.


Asn Neuro | 2018

In Vivo Optical Imaging of Myelination Events in a Myelin Basic Protein Promoter-Driven Luciferase Transgenic Mouse Model

James Cao; Yanping Hu; Mohammed Salman Shazeeb; Carlos E. Pedraza; Nilesh Pande; Daniel Weinstock; Gregory H. Polites; Wenfei Zhang; Karen J. Chandross; Xiaoyou Ying

The compact myelin sheath is important for axonal function, and its loss can lead to neuronal cell death and irreversible functional deficits. Myelin is vulnerable to a variety of metabolic, toxic, and autoimmune insults. In diseases like multiple sclerosis, there is currently no therapy to stop myelin loss, underscoring the need for neuroprotective and remyelinating therapies. Noninvasive, robust techniques are also needed to confirm the effect of such therapies in animal models. This article describes the generation, characterization, and potential uses for a myelin basic protein-luciferase (MBP-luci) transgenic mouse model, in which the firefly luciferase reporter gene is selectively controlled by the MBP promoter. In vivo bioluminescence imaging can be used to visualize and quantify demyelination and remyelination at the transcriptional level, noninvasively, and in real time. Transgenic mice were assessed in the cuprizone-induced model of demyelination, and luciferase activity highly correlated with demyelination and remyelination events as confirmed by both magnetic resonance imaging and postmortem histological analysis. Furthermore, MBP-luci mice demonstrated enhanced luciferase signal and remyelination in the cuprizone model after treatment with a peroxisome proliferator activated receptor-delta selective agonist and quetiapine. Imaging sensitivity was further enhanced by using CycLuc 1, a luciferase substrate, which has greater blood–brain barrier penetration. We demonstrated the utility of MBP-luci model in tracking myelin changes in real time and supporting target and therapeutic validation efforts.


Archive | 2017

Molecular Techniques in Immunopathology

Bevin Zimmerman; Jason Aligo; Daniel Weinstock

Molecular pathology is a rapidly progressing field. As members of a multidisciplinary investigational team, pathologists are increasingly being asked to have a basic understanding of molecular techniques, their usefulness, and their limitations. The correlation of the morphologic phenotype with the cellular and gene based pathogenesis of disease lies within this realm. This chapter will focus on appropriate sample collection for molecular pathology as well as the utility of various molecular techniques as tools from for use in drug discovery and through development.


Cancer immunology research | 2015

Abstract B58: Early safety assessment of single and combination therapy using TDAR

Amy Volk; Mindi Walker; Kerry Brosnan; Dorie Capaldi; Patricia Rafferty; Daniel Weinstock; Eva Emmell

The discovery of targeted therapies against tumors offers promise of therapeutic benefit to patients however, it poses challenges in assessing immunologic and toxicologic risk during drug development. We determined that early safety assessment of combination therapy, prior to later stage toxicology studies, can be used to support Go/No-Go NME decision and thereby reduce time, efficiency, and resources used to choose and develop lead candidates. The rodent T-cell-dependent antibody response (TDAR) assay is used to assess the effect of candidate therapeutic agents on the immune system by measuring primary and secondary IgM and IgG antibody responses to exogenous antigen challenge. TDAR responses require intact function of multiple immune cells including antigen presenting cells and T and B lymphocytes, as well as a cytokine-dependent isotype class switch from IgM to IgG, resulting in production of an antigen-specific antibody response. Alterations in the amount of antibody produced therefore can reflect effects on any or all cell populations involved in TDAR. TDAR is commonly used in preclinical drug development especially where increased cause for concern exists (ICH guideline S8). Development of combination therapy that engages multiple targets impacting the immune system poses unique opportunity for increased efficacy but also unique risk for increased immunotoxicity including immune stimulation. For this work, a mouse TDAR evaluating primary and secondary KLH antibody responses in a KLH-Specific IgM and IgG sandwich enzyme-linked immunosorbent assay (ELISA) was first validated and then used to assess immunotoxicologic potential of multiple single immunosuppressive agents (cyclophosphamide (CTX), abatacept, azathioprine (AZT), etanercept, cyclosporine (CsA), and prednisone) and biological therapies (A, B, C, D, E, and F) and combination biologic therapies ( A+B, C+D, E+F). Doses of 100 mg/kg CsA, 250 mg/kg abatacept, 125 mg/kg etanercept, 100 mg/kg AZT, 20 mg/kg prednisone administered subcutaneously (s.c.) on Days 1 and 3 had mild immunosuppressive effects. 200 mg/kg of CTX administered s.c. had an expected robust immunosuppressive effect that was statistically significant than control. Combination of biologic therapies did not result in enhanced TDAR immunotoxicity compared to single biologic therapy alone for the molecules evaluated. Tier 1 immunotoxicology assessments similar to those in standard toxicity studies were added to the TDAR assessment. Together, these data support the use of the TDAR assay for early safety assessment of potential combination therapies against tumors. Citation Format: Amy L. Volk, Mindi Walker, Kerry Brosnan, Dorie Capaldi, Patricia Rafferty, Daniel Weinstock, Eva Emmell. Early safety assessment of single and combination therapy using TDAR. [abstract]. In: Proceedings of the AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. Philadelphia (PA): AACR; Cancer Immunol Res 2015;3(10 Suppl):Abstract nr B58.


International Journal of Toxicology | 2015

Cytokines The Good, the Bad, and the Deadly

Thulasi Ramani; Carol S. Auletta; Daniel Weinstock; Barbara Mounho-Zamora; Patricia C. Ryan; Theodora W. Salcedo; Gregory Bannish

Collaboration


Dive into the Daniel Weinstock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge