Daniel X. Johansson
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel X. Johansson.
PLOS Pathogens | 2010
Thomas Krey; Jacques d'Alayer; Carlos M. Kikuti; Aure Saulnier; Laurence Damier-Piolle; Isabelle Petitpas; Daniel X. Johansson; Rajiv G. Tawar; Bruno Baron; Bruno Robert; Patrick England; Mats A. A. Persson; Annette Martin; Félix A. Rey
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Daniel X. Johansson; Cécile Voisset; Alexander W. Tarr; Mie Aung; Jonathan K. Ball; Jean Dubuisson; Mats A. A. Persson
One way to dissect the antibody response to an invading microorganism is to clone the antibody repertoire from immune donors and subsequently characterize the specific antibodies. Recently, methodological advances have allowed investigations of neutralizing antibodies against hepatitis C virus (HCV) in vitro. We have investigated three human mAbs, previously isolated from an individual infected with HCV of genotype 2b, that are known to cross-react in a binding assay to the envelope E2 protein of genotypes 1a and 1b. We now report that two of them have a neutralizing activity with a breadth not previously observed. Indeed, mAbs 1:7 and A8 recognized E2 from all of the six major genotypes, and they neutralized retroviral pseudoparticles [HCV pseudoparticles (HCVpp)] carrying genetically equally diverse HCV envelope glycoproteins. Importantly, these antibodies were also able to neutralize the cell culture infectious HCV clone JFH-1 in vitro, with IC50 values of 60 ng/ml and 560 ng/ml, respectively. The conformational epitopes of these two broadly reactive antibodies were overlapping yet distinct and involved amino acid residues in the 523–535 region of E2, known to be important for the E2–CD81 interaction. The third antibody clone, representing a dominant population in the initial screen for these antibodies, was less broadly reactive and was unable to neutralize the genotype 2a infectious clone JFH-1. Our results confirm at the clonal level that broadly neutralizing human anti-HCV antibodies can be elicited and that the region amino acids 523–535 of the HCV envelope glycoprotein E2 carries neutralizing epitopes conserved across all genotypes.
Journal of Virology | 2014
David Hallengärd; Maria Kakoulidou; Aleksei Lulla; Beate M. Kümmerer; Daniel X. Johansson; Margit Mutso; Valeria Lulla; John K. Fazakerley; Pierre Roques; Roger Le Grand; Andres Merits; Peter Liljeström
ABSTRACT Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.
PLOS ONE | 2012
Daniel X. Johansson; Karl Ljungberg; Maria Kakoulidou; Peter Liljeström
RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines.
Journal of Virology | 2012
Maria L. Knudsen; Alice Mbewe-Mvula; Maximillian Rosario; Daniel X. Johansson; Maria Kakoulidou; Anne Bridgeman; Arturo Reyes-Sandoval; Alfredo Nicosia; Karl Ljungberg; Tomáš Hanke; Peter Liljeström
ABSTRACT Vaccination using “naked” DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8+ T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8+ T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.
Atherosclerosis | 2010
Charlotta Hjerpe; Daniel X. Johansson; Andreas Hermansson; Göran K. Hansson; Xinghua Zhou
OBJECTIVE Atherosclerosis is an inflammatory disease involving activation of adaptive and innate immune responses to modified lipoproteins. Dendritic cells (DCs), which are professional antigen-presenting cells that activate T cells, are present in atherosclerotic lesions but their role for atherosclerosis-related immunity is unclear. METHODS AND RESULTS To evaluate the role of DC in atherosclerosis, DCs pulsed with malondialdehyde modified low density lipoprotein (MDA-LDL) were transferred into Apoe(-/-) mice. The extent of disease was measured in the aortic root and was compared to that in animals treated with Keyhole Limpet Hemocyanin (KLH) pulsed DCs and to untreated animals. Mice receiving MDA-LDL pulsed DCs showed significantly larger atherosclerotic lesions compared to controls, with increased inflammation in the lesions and antigen-specific immune responses. Furthermore, MDA-LDL administration in complete Freunds adjuvant, which is atheroprotective, led to the induction of regulatory T cells whereas MDA-LDL-DCs treatment did not, suggesting that modulation of immune properties can result in different effects on atherosclerosis. CONCLUSIONS DCs presenting components of LDL promote specific immunity to their antigen, increase lesion inflammation and accelerate atherosclerosis.
Atherosclerosis | 2009
Xinghua Zhou; Thomas P. Johnston; Daniel X. Johansson; Paolo Parini; Keiko Funa; Jan Svensson; Göran K. Hansson
OBJECTIVE The pathogenesis of atherosclerosis involves inflammation and immune reactions. Low-density lipoproteins accumulate and are oxidized (oxLDL) in the arterial intima during hypercholesterolemia, leading to activation of endothelial cells, macrophages and T cells. We have previously found that severe hypercholesterolemia can induce a switch of autoimmune responses from T helper (Th)1 to Th2 effector type in atherosclerotic apoE knockout (E0) mice. The present study was performed to investigate whether Th3 immune effector responses and their inducing cytokine, transforming growth factor-beta (TGF-beta) are affected by hypercholesterolemia. METHODS AND RESULTS In E0 mice fed with high cholesterol diet and in C57BL/6J mice treated with poloxamer P-407, an agent that elevates plasma cholesterol and triglycerides, severe hypercholesterolemia led to elevated circulating TGF-beta1 levels, increased TGF-beta1(+)CD4(+) Th3 cells in lesions and spleen, and increased Th3 dependent IgG2b antibodies to oxLDL. A positive correlation was observed between plasma TGF-beta1 and cholesterol levels and between plasma TGF-beta1 and IgG2b anti-oxLDL. CONCLUSIONS Such elevation of TGF-beta may increase the stability of plaques by inhibiting T cell responses and macrophage activation and by stimulating collagen synthesis. This new finding could be important in the regulation of immune activity, inflammation and fibrosis in the atherosclerotic plaque.
International Journal of Molecular Medicine | 2012
Dick Wågsäter; Daniel X. Johansson; Vincent Fontaine; Emina Vorkapic; Alexandra Bäcklund; Anton Razuvaev; Mikko I. Mäyränpää; Charlotta Hjerpe; Kenneth Caidahl; Anders Hamsten; Anders Franco-Cereceda; Johannes Wilbertz; Jesper Swedenborg; Xinghua Zhou; Per Eriksson
Remodeling of extracellular matrix (ECM) plays an important role in both atherosclerosis and aneurysm disease. Serine protease inhibitor A3 (serpinA3) is an inhibitor of several proteases such as elastase, cathepsin G and chymase derived from mast cells and neutrophils. In this study, we investigated the putative role of serpinA3 in atherosclerosis and aneurysm formation. SerpinA3 was expressed in endothelial cells and medial smooth muscle cells in human atherosclerotic lesions and a 14-fold increased expression of serpinA3n mRNA was found in lesions from Apoe-/- mice compared to lesion-free vessels. In contrast, decreased mRNA expression (-80%) of serpinA3 was found in biopsies of human abdominal aortic aneurysm (AAA) compared to non-dilated aortas. Overexpression of serpinA3n in transgenic mice did not influence the development of atherosclerosis or CaCl2-induced aneurysm formation. In situ zymography analysis showed that the transgenic mice had lower cathepsin G and elastase activity, and more elastin in the aortas compared to wild-type mice, which could indicate a more stable aortic phenotype. Differential vascular expression of serpinA3 is clearly associated with human atherosclerosis and AAA but serpinA3 had no major effect on experimentally induced atherosclerosis or AAA development in mouse. However, serpinA3 may be involved in a phenotypic stabilization of the aorta.
Protein Engineering Design & Selection | 2010
Marija Backovic; Daniel X. Johansson; Barbara G. Klupp; Thomas C. Mettenleiter; Mats A. A. Persson; Félix A. Rey
Fab molecules are used as therapeutic agents, and are invaluable tools in structural biology. We report here a method for production of recombinant Fab in Drosophila S2 cells for use in structural biology. Stably transfected S2 cell lines expressing the Fab were created within weeks. The recombinant Fab was secreted, and after affinity and size exclusion chromatography, 16 mg of pure protein were obtained from a liter of cell culture. The Fab was functional and formed a complex with its cognate antigen as demonstrated by co-precipitation and size exclusion chromatography. Biochemical characterization indicated that the Fab from S2 cells is less extensively glycosylated than the Fab obtained by digestion of antibody produced in hybridoma cells, a feature that may be advantageous for the purposes of crystallogenesis. Taken together, obtaining recombinant Fab from the S2 cells has been a faster and considerably more cost-effective method compared with the enzymatic digestion of the monoclonal antibody.
PLOS ONE | 2014
Tz-Chun Guo; Daniel X. Johansson; Øyvind Haugland; Peter Liljeström; Øystein Evensen
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.