Daniel Zenklusen
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Zenklusen.
Nature | 2005
Stefan Hüttelmaier; Daniel Zenklusen; Marcell Lederer; Jason B. Dictenberg; Mike Lorenz; Xiuhua Meng; Gary J. Bassell; John Condeelis; Robert H. Singer
Localization of β-actin messenger RNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (Zipcode binding protein 1), which binds to a conserved 54-nucleotide element in the 3′-untranslated region of the β-actin mRNA known as the ‘zipcode’. ZBP1 promotes translocation of the β-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. It is not known how the ZBP1–RNA complex achieves asymmetric protein sorting by localizing β-actin mRNA. Here we show that chicken ZBP1 modulates the translation of β-actin mRNA. ZBP1 associates with the β-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation only occurs when the ZBP1–RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over β-actin mRNA translation, which is important for cell migration and neurite outgrowth.
Nature Structural & Molecular Biology | 2008
Daniel Zenklusen; Daniel R. Larson; Robert H. Singer
Proper execution of transcriptional programs is a key requirement of gene expression regulation, demanding accurate control of timing and amplitude. How precisely the transcription machinery fulfills this task is not known. Using an in situ hybridization approach that detects single mRNA molecules, we measured mRNA abundance and transcriptional activity within single Saccharomyces cerevisiae cells. We found that expression levels for particular genes are higher than initially reported and can vary substantially among cells. However, variability for most constitutively expressed genes is unexpectedly small. Combining single-transcript measurements with computational modeling indicates that low expression variation is achieved by transcribing genes using single transcription-initiation events that are clearly separated in time, rather than by transcriptional bursts. In contrast, PDR5, a gene regulated by the transcription coactivator complex SAGA, is expressed using transcription bursts, resulting in larger variation. These data directly demonstrate the existence of multiple expression modes used to modulate the transcriptome.
Science | 2011
Daniel R. Larson; Daniel Zenklusen; Bin Wu; Jeffrey A. Chao; Robert H. Singer
In yeast, the initiation of gene expression is stochastic and is controlled by transcription factor search times. Cellular messenger RNA levels are achieved by the combinatorial complexity of factors controlling transcription, yet the small number of molecules involved in these pathways fluctuates stochastically. It has not yet been experimentally possible to observe the activity of single polymerases on an endogenous gene to elucidate how these events occur in vivo. Here, we describe a method of fluctuation analysis of fluorescently labeled RNA to measure dynamics of nascent RNA—including initiation, elongation, and termination—at an active yeast locus. We find no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle. By measuring the abundance and intranuclear mobility of an upstream transcription factor, we observe that the gene firing rate is directly determined by trans-activating factor search times.
Molecular and Cellular Biology | 2002
Daniel Zenklusen; Patrizia Vinciguerra; Jean-Christophe Wyss; Françoise Stutz
ABSTRACT Yra1p/REF participates in mRNA export by recruiting the export receptor Mex67p to messenger ribonucleoprotein (mRNP) complexes. Yra1p also binds Sub2p, a DEAD box ATPase/RNA helicase implicated in splicing and required for mRNA export. We identified genetic and physical interactions between Yra1p, Sub2p, and Hpr1p, a protein involved in transcription elongation whose deletion leads to poly(A)+ RNA accumulation in the nucleus. By chromatin immunoprecipitation (ChIP) experiments, we show that Hpr1p, Sub2p, and Yra1p become associated with active genes during transcription elongation and that Hpr1p is required for the efficient recruitment of Sub2p and Yra1p. The data indicate that transcription and export are functionally linked and that mRNA export defects may be due in part to inefficient loading of essential mRNA export factors on the growing mRNP. We also identified functional interactions between Yra1p and the exosome components Rrp45p and Rrp6p. We show that yra1, sub2, and Δhpr1 mutants all present defects in mRNA accumulation and that deletion of RRP6 in yra1 mutants restores normal mRNA levels. The data support the hypothesis that an exosome-dependent surveillance mechanism targets improperly assembled mRNPs for degradation.
The EMBO Journal | 1999
Yvan Strahm; Birthe Fahrenkrog; Daniel Zenklusen; Elizabeth Rychner; Julia Kantor; Michael Rosbash; Françoise Stutz
Gle1p is an essential, nuclear pore complex (NPC)‐associated RNA export factor. In a screen for high copy suppressors of a GLE1 mutant strain, we identified the FG‐nucleoporin Rip1p and the DEAD‐box protein Rat8p/Dbp5p, both of which have roles in RNA export; we also found Ymr255p/Gfd1p, a novel inessential protein. All three high copy suppressors interact with the C‐terminal domain of Gle1p; immunoelectron microscopy localizations indicate that Gle1p, Rip1p and Rat8p/Dbp5p are present on the NPC cytoplasmic fibrils; Rip1p was also found within the nucleoplasm and on the nuclear baskets. In vivo localizations support the hypothesis that Rip1p contributes to the association of Gle1p with the pore and that Gle1p, in turn, provides a binding site for Rat8p/Dbp5p at the NPC. These data are consistent with the view that Gle1p, Rip1p, Rat8p/Dbp5p and Ymr255p/Gfd1p associate on the cytoplasmic side of the NPC to act in a terminal step of RNA export. We also describe a human functional homologue of Rip1p, called hCG1, which rescues Rip1p function in yeast, consistent with the evolutionary conservation of this NPC‐associated protein.
Nature Methods | 2013
Sami Hocine; Pascal Raymond; Daniel Zenklusen; Jeffrey A. Chao; Robert H. Singer
Live-cell imaging of mRNA yields important insights into gene expression, but it has generally been limited to the labeling of one RNA species and has never been used to count single mRNAs over time in yeast. We demonstrate a two-color imaging system with single-molecule resolution using MS2 and PP7 RNA labeling. We use this methodology to measure intrinsic noise in mRNA levels and RNA polymerase II kinetics at a single gene.
Trends in Cell Biology | 2009
Daniel R. Larson; Robert H. Singer; Daniel Zenklusen
Analyzing the expression of single genes in single cells appears minimalistic in comparison to gene expression studies based on more global approaches. However, stimulated by advances in imaging technologies, single-cell studies have become an essential tool in understanding the rules that govern gene expression. This quantitative view of single-cell gene expression is based on counting mRNAs in single cells, monitoring transcription in real time, and visualizing single proteins. Parallel advances in mathematical models based on stochastic, discrete descriptions of biochemical processes have provided crucial insights into the underlying cellular mechanisms that control expression. The view that has emerged is rooted in a probabilistic understanding of cellular processes that quantitatively explains both the mean and the variation observed in gene-expression patterns among single cells. Thus, the close coupling between imaging and mathematical theory has established single-cell analysis as an essential branch of systems biology.
The EMBO Journal | 2005
Patrizia Vinciguerra; Nahid Iglesias; Jurgi Camblong; Daniel Zenklusen; Françoise Stutz
The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR‐like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse‐chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA‐binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.
Molecular and Cellular Biology | 2002
Christopher M. Hammell; Stefan Gross; Daniel Zenklusen; Catherine V. Heath; Françoise Stutz; Claire Moore; Charles N. Cole
ABSTRACT In a screen to identify genes required for mRNA export in Saccharomyces cerevisiae, we isolated an allele of poly(A) polymerase (PAP1) and novel alleles encoding several other 3′ processing factors. Many newly isolated and some previously described mutants (rna14-48, rna14-49, rna14-64, rna15-58, and pcf11-1 strains) are defective in polymerase II (Pol II) termination but, interestingly, retain the ability to polyadenylate these improperly processed transcripts at the nonpermissive temperature. Deletion of the cis-acting sequences required to couple 3′ processing and termination also produces transcripts that fail to exit the nucleus, suggesting that all of these processes (cleavage, termination, and export) are coupled. We also find that several but not all mRNA export mutants produce improperly 3′ processed transcripts at the nonpermissive temperature. 3′ maturation defects in mRNA export mutants include improper Pol II termination and/or the previously characterized hyperpolyadenylation of transcripts. Importantly, not all mRNA export mutants have defects in 3′ processing. The similarity of the phenotypes of some mRNA export mutants and 3′ processing mutants indicates that some factors from each process may mechanistically interact to couple mRNA processing and export. Consistent with this assumption, we present evidence that Xpo1p interacts in vivo with several 3′ processing factors and that the addition of recombinant Xpo1p to in vitro processing reaction mixtures stimulates 3′ maturation. Of the core 3′ processing factors tested (Rna14p, Rna15p, Pcf11p, Hrp1p, Fip1p, and Cft1p), only Hrp1p shuttles. Overexpression of Rat8p/Dbp5p suppresses both 3′ processing and mRNA export defects found in xpo1-1 cells.
Molecular and Cellular Biology | 2001
Daniel Zenklusen; Patrizia Vinciguerra; Yvan Strahm; Françoise Stutz
ABSTRACT Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessentialSaccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)+ RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP.