Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Alic is active.

Publication


Featured researches published by Daniela Alic.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.


Classical and Quantum Gravity | 2012

NR/HEP: roadmap for the future

Vitor Cardoso; Leonardo Gualtieri; Carlos Herdeiro; Ulrich Sperhake; Paul M. Chesler; Luis Lehner; S. Park; Harvey S. Reall; Carlos F. Sopuerta; Daniela Alic; Oscar J. C. Dias; Roberto Emparan; Valeria Ferrari; Steven B. Giddings; Mahdi Godazgar; Ruth Gregory; Veronika E. Hubeny; Akihiro Ishibashi; Greg Landsberg; Carlos O. Lousto; David Mateos; Vicki Moeller; Hirotada Okawa; Paolo Pani; M. Andy Parker; Frans Pretorius; Masaru Shibata; Hajime Sotani; Toby Wiseman; Helvi Witek

Physic in curved spacetime describes a multitude of phenomena, ranging from astrophysics to high-energy physics (HEP). The last few years have witnessed further progress on several fronts, including the accurate numerical evolution of the gravitational field equations, which now allows highly nonlinear phenomena to be tamed. Numerical relativity simulations, originally developed to understand strong-field astrophysical processes, could prove extremely useful to understand HEP processes such as trans-Planckian scattering and gauge–gravity dualities. We present a concise and comprehensive overview of the state-of-the-art and important open problems in the field(s), along with a roadmap for the next years.


Physical Review D | 2013

General-Relativistic Resistive Magnetohydrodynamics in three dimensions: formulation and tests

Kyriaki Dionysopoulou; Daniela Alic; Carlos Palenzuela; Luciano Rezzolla; Bruno Giacomazzo

We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD)equationswithintheWHISKYcode.ThenumericalmethodadoptedexploitsthepropertiesofimplicitexplicitRunge-Kuttanumericalschemestotreatthestifftermsthatappearintheequationsforlargeelectrical conductivities. Using tests in one, two, andthree dimensions, we show that ourimplementation is robustand recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximationandindynamicalspacetimes.Finally,becauseofitsastrophysicalrelevanceandbecauseitprovidesa severe tested for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturbative studies within 0.7% and 5.6% for the real and the imaginary part of the ‘ ¼ 1 mode eigenfrequency, respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.


Physical Review D | 2012

Conformal and covariant formulation of the Z4 system with constraint-violation damping

Daniela Alic; Carles Bona-Casas; Carles Bona; Luciano Rezzolla; Carlos Palenzuela

We present a new formulation of the Einstein equations based on a conformal and traceless decomposition of the covariant form of the Z4 system. This formulation combines the advantages of a conformal decomposition, such as the one used in the BSSNOK formulation (i.e. well-tested hyperbolic gauges, no need for excision, robustness to imperfect boundary conditions) with the advantages of a constraintdamped formulation, such as the generalized harmonic one (i.e. exponential decay of constraint violations when these are produced). We validate the new set of equations through standard tests and by evolving binary black hole systems. Overall, the new conformal formulation leads to a better behavior of the constraint equations and a rapid suppression of the violations when they occur. The changes necessary to implement the new conformal formulation in standard BSSNOK codes are very small as are the additional computational costs.


The Astrophysical Journal | 2012

Accurate Simulations of Binary Black Hole Mergers in Force-free Electrodynamics

Daniela Alic; Philipp Moesta; Luciano Rezzolla; Olindo Zanotti; José Luis Jaramillo

We provide additional information on our recent study of the electromagnetic emission produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. As anticipated in a recent letter, our results show that although a dual-jet structure is present, the associated luminosity is ~100 times smaller than the total one, which is predominantly quadrupolar. Here we discuss the details of our implementation of the equations in which the force-free condition is not implemented at a discrete level, but rather obtained via a damping scheme which drives the solution to satisfy the correct condition. We show that this is important for a correct and accurate description of the current sheets that can develop in the course of the simulation. We also study in greater detail the three-dimensional charge distribution produced as a consequence of the inspiral and show that during the inspiral it possesses a complex but ordered structure which traces the motion of the two black holes. Finally, we provide quantitative estimates of the scaling of the electromagnetic emission with frequency, with the diffused part having a dependence that is the same as the gravitational-wave one and that scales as L^(non-coll)_(EM) ≈ Ω^((10/3)–(8/3)), while the collimated one scales as L^(coll)_(EM) ≈ Ω^((5/3)–(6/3)), thus with a steeper dependence than previously estimated. We discuss the impact of these results on the potential detectability of dual jets from supermassive black holes and the steps necessary for more accurate estimates.


The Astrophysical Journal | 2012

On the Detectability of Dual Jets from Binary Black Holes

Philipp Moesta; Daniela Alic; Luciano Rezzolla; Olindo Zanotti; Carlos Palenzuela

We revisit the suggestion that dual jets can be produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. By performing independent calculations of the late inspiral and merger, and by computing the electromagnetic (EM) emission in a way which is consistent with estimates using the Poynting flux, we show that a dual-jet structure is present but energetically subdominant with respect to a non-collimated and predominantly quadrupolar emission, which is similar to the one computed when the binary is in electrovacuum. While our findings set serious restrictions on the detectability of dual jets from coalescing binaries, they also increase the chances of detecting an EM counterpart from these systems.


Monthly Notices of the Royal Astronomical Society | 2012

General relativistic radiation hydrodynamics of accretion flows: II. Treating stiff source terms and exploring physical limitations

Constanze Roedig; Olindo Zanotti; Daniela Alic

We present the implementation of an implicit–explicit (IMEX) Runge–Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes’ new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi–Hoyle–Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ∼ 10 6 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γ eff ∼ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL ∼ 10 −2 ; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of astrophysical systems.


Physical Review D | 2015

General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars

Kyriaki Dionysopoulou; Daniela Alic; Luciano Rezzolla

We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.


Physical Review D | 2013

On the black hole from merging binary neutron stars: how fast can it spin?

Wolfgang Kastaun; Filippo Galeazzi; Daniela Alic; Luciano Rezzolla; José A. Font

The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formulations. Interestingly, we find that a limit of


Physical Review D | 2013

Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars

Daniela Alic; Wolfgang Kastaun; Luciano Rezzolla

J/M^2 \simeq 0.89

Collaboration


Dive into the Daniela Alic's collaboration.

Top Co-Authors

Avatar

Luciano Rezzolla

Frankfurt Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge