Daniela Barone
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Barone.
Free Radical Research | 2014
P. Venditti; Gaetana Napolitano; Daniela Barone; S. Di Meo
Abstract Aim of the present study was to test, by vitamin E treatment, the hypothesis that muscle adaptive responses to training are mediated by free radicals produced during the single exercise sessions. Therefore, we determined aerobic capacity of tissue homogenates and mitochondrial fractions, tissue content of mitochondrial proteins and expression of factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. Moreover, we determined the oxidative damage extent, antioxidant enzyme activities, and glutathione content in both tissue preparations, mitochondrial ROS production rate. Finally we tested mitochondrial ROS production rate and muscle susceptibility to oxidative stress. The metabolic adaptations to training, consisting in increased muscle oxidative capacity coupled with the proliferation of a mitochondrial population with decreased oxidative capacity, were generally prevented by antioxidant supplementation. Accordingly, the expression of the factors involved in mitochondrial biogenesis, which were increased by training, was restored to the control level by the antioxidant treatment. Even the training-induced increase in antioxidant enzyme activities, glutathione level and tissue capacity to oppose to an oxidative attach were prevented by vitamin E treatment. Our results support the idea that the stimulus for training-induced adaptive responses derives from the increased production, during the training sessions, of reactive oxygen species that stimulates the expression of PGC-1, which is involved in mitochondrial biogenesis and antioxidant enzymes expression. On the other hand, the observation that changes induced by training in some parameters are only attenuated by vitamin E treatment suggests that other signaling pathways, which are activated during exercise and impinge on PGC-1, can modify the response to the antioxidant integration.
Journal of Virology | 2016
Annamaria Sandomenico; Antonio Leonardi; Rita Berisio; Luca Sanguigno; Giuseppina Focà; Annalia Focà; Alessia Ruggiero; Nunzianna Doti; Livio Muscariello; Daniela Barone; Claudio Farina; Ania M. Owsianka; Luigi Vitagliano; Arvind H. Patel; Menotti Ruvo
ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines.
Journal of Biomolecular Structure & Dynamics | 2015
Nicole Balasco; Daniela Barone; Luigi Vitagliano
Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaHCTD topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaHCTD. Although these analyses, in line with literature data, suggest that the isolated RfaHCTD has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141–145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaHCTD may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaHCTD. These observations suggest that the unusual conformational behavior of RfaHCTD may be rare but not unique.
Free Radical Research | 2014
P. Venditti; Gaetana Napolitano; Daniela Barone; S. Di Meo
Abstract We studied vitamin E effects on metabolic changes and oxidative damage elicited by swim training in rat liver. Training reduced mitochondrial aerobic capacity but increased liver content of mitochondrial proteins, so that tissue aerobic capacity was not different in trained and sedentary animals. Vitamin E supplementation prevented the training-induced mitochondrial changes. Training and vitamin E effects were consistent with the changes in tissue content of factors involved in mitochondrial biogenesis (peroxisomal proliferator-activated receptor-γ coactivator and nuclear respiratory factors 1 and 2). Tissue and mitochondrial oxidative damage was reduced by training decreasing the rate of mitochondrial reactive oxygen species (ROS) production and enhancing glutathione levels and glutathione peroxidase and glutathione reductase activities. The effects of vitamin E were different when it was administered to sedentary or trained rats. In the former, vitamin E reduced liver preparations oxidative damage decreasing ROS production rate and increasing GSH content without any effect on antioxidant enzyme activities. In the latter, vitamin E did not modify ROS production and oxidative damage but decreased antioxidant levels. This decrease was likely responsible for the enhanced susceptibility to in vitro oxidative attack of the hepatic tissue from trained rats following vitamin E supplementation. These results indicate that vitamin E integration, which can be healthy for animals subjected to acute exercise, is not advisable during training because it prevents or reduces the favourable effects of the physical activity. They also support the idea that the stimulus for training-induced adaptive responses can derive from the increased ROS production that accompanies the single sessions of the training program.
Oxidative Medicine and Cellular Longevity | 2015
Simona Carfagna; Gaetana Napolitano; Daniela Barone; Gabriele Pinto; Antonino Pollio; P. Venditti
We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.
Journal of Biomolecular Structure & Dynamics | 2016
Daniela Barone; Nicole Balasco; Ida Autiero; Luigi Vitagliano
Hepatitis C Virus (HCV) is one of the most persistent human viruses. Although effective therapeutic approaches have been recently discovered, their use is limited by the elevated costs. Therefore, the development of alternative/complementary strategies is an urgent need. The E2 glycoprotein, the most immunogenic HCV protein, and its variants represent natural candidates to achieve this goal. Here we report an extensive molecular dynamics (MD) analysis of the intrinsic properties of E2. Our data provide interesting clues on the global and local intrinsic dynamic features of the protein. Present MD data clearly indicate that E2 combines a flexible structure with a network of covalent bonds. Moreover, the analysis of the two most important antigenic regions of the protein provides some interesting insights into their intrinsic structural and dynamic properties. Our data indicate that a fluctuating β-hairpin represents a populated state by the region E2412−423. Interestingly, the analysis of the epitope E2427−446 conformation, that undergoes a remarkable rearrangement in the simulation, has significant similarities with the structure that the E2430−442 fragment adopts in complex with a neutralizing antibody. Present data also suggest that the strict conservation of Gly436 in E2 protein of different HCV genotypes is likely dictated by structural restraints. Moreover, the analysis of the E2412−423 flexibility provides insights into the mechanisms that some antibodies adopt to anchor Trp437 that is fully buried in E2. Finally, the present investigation suggests that MD simulations should systematically complement crystallographic studies on flexible proteins that are studied in combination with antibodies.
Journal of Biomolecular Structure & Dynamics | 2016
Daniela Barone; Nicole Balasco; Luigi Vitagliano
The KCTD family is an emerging class of proteins that are involved in important biological processes whose biochemical and structural properties are rather poorly characterized or even completely undefined. We here used KCTD5, the only member of the family with a known three-dimensional structure, to gain insights into the intrinsic structural stability of the C-terminal domain (CTD) and into the mutual dynamic interplay between the two domains of the protein. Molecular dynamics (MD) simulations indicate that in the simulation timescale (120 ns), the pentameric assembly of the CTD is endowed with a significant intrinsic stability. Moreover, MD analyses also led to the identification of exposed β-strand residues. Being these regions intrinsically sticky, they could be involved in the substrate recognition. More importantly, simulations conducted on the full-length protein provide interesting information of the relative motions between the BTB domain and the CTD of the protein. Indeed, the dissection of the overall motion of the protein is indicative of a large interdomain twisting associated with limited bending movements. Notably, MD data indicate that the entire interdomain motion is pivoted by a single residue (Ser150) of the hinge region that connects the domains. The functional relevance of these motions was evaluated in the context of the functional macromolecular machinery in which KCTD5 is involved. This analysis indicates that the interdomain twisting motion here characterized may be important for the correct positioning of the substrate to be ubiquitinated with respect to the other factors of the ubiquitination machinery.
Free Radical Research | 2016
P. Venditti; Gaetana Napolitano; Daniela Barone; Emanuela Pervito; Sergio Di Meo
ABSTRACT We investigated whether reactive oxygen species (ROS) are involved in heart adaptive responses administering a vitamin E-enriched diet to trained rats. Using the homogenates and/or mitochondria from rat hearts we determined the aerobic capacity, tissue level of mitochondrial proteins, and expression of cytochrome c and factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. We also determined the oxidative damage, glutathione peroxidase (GPX) and reductase activities, glutathione content, mitochondrial ROS release rate, and susceptibility to in vitro oxidative challenge. Glutathione (GSH) content was not affected by both training and antioxidant supplementation. Conversely, antioxidant supplementation prevented metabolic adaptations to training, such as the increases in oxidative capacity, tissue content of mitochondrial proteins, and cytochrome c expression, attenuated some protective adaptations, such as the increase in antioxidant enzyme activities, and did not modify the decrease in ROS release by succinate supplemented mitochondria. Moreover, vitamin E prevented the training-linked increase in tissue capacity to oppose an oxidative attach. The antioxidant effects were associated with decreased levels of PGC-1, NRF-1, and NRF-2 expression. Our results support the idea that some heart adaptive responses to training depend on ROS produced during the exercise sessions and are mediated by the increase in PGC-1 expression which is involved in both the regulation of respiratory capacity and antioxidant protection. However, vitamin inability to prevent some adaptations suggests that other signaling pathways impinging on PGC-1 can modify the response to the antioxidant integration.
Current Medicinal Chemistry | 2017
Nicole Balasco; Daniela Barone; Annamaria Sandomenico; Alessia Ruggiero; Nunzianna Doti; Rita Berisio; Menotti Ruvo; Luigi Vitagliano
BACKGROUND HCV-linked pathologies represent worldwide health threats. Over the years, an enormous number of independent studies have been devoted to the understanding of the molecular bases of HCV infection. A significant amount of these investigations has been focused on the structural characterization of the virus proteins with the aim of developing structure-based innovative therapeutic approaches. An analysis of the current Protein Data Bank content unravels that the structural biology of the virus has hitherto covered a large fraction of the HCV proteins (75%). OBJECTIVE The present review recapitulates the state-of-the-art of structural characterizations of HCV individual proteins with a specific focus on their structural versatility/flexibility. RESULTS This survey indicates there is accumulating evidence that structural flexibility is a common feature among HCV proteins. This versatility can be detected at different structural level i.e. occurrence of alternative oligomeric states and/or of local and global flexibility. Somewhat surprisingly, some disordered or highly flexible regions of HCV proteins, such as the core and the antigenic fragment 412-423 of E2, present highly conserved sequences among the virus genotypes. The overall versatility of HCV proteins plays an important role in host protein recognition, drug resistance mechanisms, and virus escape from the host immunogenic system. Of particular relevance is the emerging idea that HCV uses local structural flexibility as an alternative tool to sequence variability to evade the immune response of the host organism. CONCLUSION We believe that concepts emerged from this survey will be important for the development of anti-HCV vaccines that are eagerly needed.
Molecular and Cellular Endocrinology | 2015
P. Venditti; Gaetana Napolitano; Daniela Barone; I. Coppola; S. Di Meo
We investigated thyroid state effect on capacity of rat liver mitochondria to remove exogenously produced H2O2, determining their ability to decrease fluorescence generated by an H2O2 detector system. The rate of H2O2 removal by both non respiring and respiring mitochondria was increased by hyperthyroidism and decreased by hypothyroidism. However, the rate was higher in the presence of respiratory substrates, in particular pyruvate/malate, indicating a respiration-dependent process. Generally, the changes in H2O2 removal rates mirrored those in H2O2 release rates excluding the possibility that endogenous and exogenous H2O2 competed for the removing system. Pharmacological inhibition revealed thyroid state-linked differences in antioxidant enzyme contribution to H2O2 removal which were consistent with those in antioxidant system activities. The H2O2 removal was only in part due to enzymatic systems and that imputable to non-enzymatic processes was higher in hyperthyroid and lower in hypothyroid mitochondria. The levels of cytochrome c and the light emissions, due to luminol oxidation catalyzed by cytochrome/H2O2, exhibited similar changes with thyroid state supporting the idea that non-enzymatic scavenging was mainly due to hemoprotein action, which produces hydroxyl radicals. Further support was obtained showing that the whole antioxidant capacity, which provides an evaluation of capacity of the systems, different from cytochromes, assigned to H2O2 scavenging, was lower in hyperthyroid than in hypothyroid state. In conclusion, our results show that mitochondria from hyperthyroid liver have a high capacity for H2O2 removal, which, however, leading in great part to more reactive oxygen species, results harmful for such organelles.